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Abstract

This paper reviews recent developments in evolutionary algorithms and visualization in the context
of multiobjective spatial decision making. A synthetic perspective is employed to bridge these two areas
and to create a unified conceptual framework that can be used to address a broad range of multiob-
jective spatial decision problems. In this framework, evolutionary algorithms are employed to generate
optimal, or near-optimal, solutions to a problem being addressed. Alternatives created are then dis-
played in an interactive visual support system that can be used by decision makers to discover the com-
peting nature of multiple objectives and to gain knowledge about the tradeoffs among alternatives.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Multiobjective spatial decision making; Evolutionary algorithms; Interactive visualization
1. Introduction

Many geographical problems are not directly solvable through the straightforward
application of a specific methodology. Such problems often require the participation of a
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variety of stakeholders with different and often conflicting objectives. Locating a sanitary
landfill, for example, may require decision makers to minimize its economic cost, and also
to minimize negative environmental effects (Melachrinoudis, Min, & Wu, 1995). Or, a polit-
ical redistricting plan may need to satisfy criteria such as equal population size of districts,
compactness, and minority representation (Williams, 1995). In land use management, the
incorporation of multiple objectives into decision making and the search for suitable land
use policies are critical to sustainable regional development (Beinat & Nijkamp, 1998).

These and other types of multiobjective problems present a significant challenge to
researchers for three main reasons. First, they are combinatorial optimization problems
that often require a large amount of computation time to solve. Second, the search for
solutions to these problems often involves the participation of stakeholders who have dif-
ferent backgrounds and view the problem from different perspectives. Finally, a solution
that meets all criteria may not exist. Instead, stakeholders are required to examine trade-
offs among competing alternatives before a final solution can be reached. As a conse-
quence, it is important to develop solution approaches that are (1) efficient in terms of
their time complexity, (2) effective in terms of their ability to find a variety of high quality
solutions, and (3) interactive so that decision makers can experiment with criteria, visually
explore alternatives, and learn about a problem as they search for its solution.

This paper has three main goals. The first is to provide an overview of recent develop-
ments in multiobjective problem solving. We believe that borrowing ideas from other fields
will benefit research on spatial decision making. The second is to present a new generalized
conceptual framework that is intended to guide the design and implementation of evolu-
tionary algorithms and visualization techniques. Evolutionary algorithms are particularly
important because they can be used to solve multiobjective geographical problems effi-
ciently, effectively, and often interactively. The third goal is to foster academic discussion
about interactive spatial decision making using evolutionary algorithms and visual sup-
port systems.

The remainder of the paper is organized in five sections. We first discuss the back-
ground and scope of the paper in Section 2. Then, in Section 3, we discuss the theoretical
and practical issues of using evolutionary algorithms for multiobjective optimization. In
Section 4, we review methodological developments in evolutionary algorithms and visual-
ization and place them in a conceptual framework that can be used to address multiobjec-
tive problems across a range of geographical applications. Two representative applications
that have been published in the literature are reviewed in Section 5. We conclude the paper
with a discussion of future research topics.

2. Multiobjective optimization: background

The first study of optimality in multiobjective problems is widely attributed to Pareto
(1896). Here, we illustrate his analytical work, without loss of generality, using the follow-
ing form of a multiobjective optimization problem:

min fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fmðxÞ�T

subject to x 2 S
ð1Þ

where f is a vector of m objective functions (f1, f2, . . . , fm) that are to be minimized, x is a
vector of decision variables, and S is a set that defines all feasible solutions.
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A solution to the above problem x 0 is said to dominate another solution x00 if and only if
"i fi(x

0) 6 fi(x
00) and $i fi(x

0) < fi(x
00). That is, if no objective function value of x 0 is greater

(worse) than that of x00, and there is at least one objective function value of x 0 that is less
(better) than that of x00, then we say that solution x 0 dominates solution x00.

All feasible alternative solutions together form a solution space. When these solutions
are placed in a space formed by the decision variables, it is called a decision space. Simi-
larly, when solutions are placed in a space formed by the objectives, it is called an objective
space. A subset of all feasible solutions is called the non-dominated or Pareto optimal set if
its members are not dominated by any solution, and if solutions outside this subset are
dominated by at least one solution in the subset. This set of non-dominated solutions is
often called a Pareto front, as illustrated in Fig. 1.

Approaches to finding solutions to optimization problems can be placed into general
categories. First, exact methods can be used to yield an optimal solution to a problem.
The use of exact approaches may become impractical, however, when large size problems
are addressed (Armstrong, 2000; Cooper, 1964; Garey & Johnson, 1979). To overcome
this issue, researchers often resort to heuristic approaches that are more efficient. Heuristic
methods, however, cannot guarantee that optimal solutions will be found, though the lit-
erature has demonstrated their effectiveness in finding optimal, or near-optimal solutions
(Cooper, 1964; Reeves, 1993).

For multiobjective optimization problems, the dichotomy between exact and heuristic
methods becomes more complicated. The ultimate goal of solving a multiobjective prob-
lem is to identify a Pareto optimal solution. To achieve this goal, three approaches have
been developed in the literature (see Miettinen, 1999). The first approach, prior articula-
tion of preferences, requires decision makers to reach a consensus about the relative
importance (weight) of each objective a priori. The preferences of decision makers are then
used in a technique called scalarization that converts a multiobjective problem into a single
f1

B

A
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Fig. 1. Non-dominated solutions to a multiobjective optimization problem that minimizes two objectives (f1 and
f2). The gray area represents a hypothetical objective space of the problem. The thick, black curves indicate the
Pareto front. Circles represent selected solutions to the problem. Each solution marked as an open circle is
dominated by at least one of the solutions marked as solid circles, while a solid circle is not dominated by any of
the circles. All solutions represented as circles, however, are dominated by solutions on the Pareto front. Note
that the Pareto front can be discontinuous.
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objective problem which can be solved using a variety of solution approaches (Cohon,
1978). In many applications, however, it is difficult for decision makers to devise a satis-
factory weighting scheme for scalarization because some features of a problem are not
fully understood during the early stages of decision making. Moreover, it is often difficult
for decision makers from different backgrounds to understand and quantify their own
preferences because objectives may be formulated in complex mathematical forms that
are difficult for non-analysts to understand. Indeed, some objectives may fall into cultural,
religious, or other realms that will defy even heroic attempts to quantify them.

The second approach is based on an interactive (or progressive) articulation of prefer-
ences, in which the preferences of decision makers are refined and incorporated into the
search process (Zionts & Wallenius, 1976). During each iteration of the process, decision
makers are presented a (typically small) subset of non-dominated solutions, and based on
these solutions they provide local information about their preferences for objectives. Then
a single objective problem is formulated and solved. Solutions to this problem are used by
decision makers to improve their understanding of the problem and to adjust their pref-
erences, which, in turn, can be used to form a new problem. This process repeats until deci-
sion makers are satisfied. Though these methods can be used to encourage the
participation of decision makers, there is no guarantee that an acceptable solution will
be reached, and even if such a solution is identified, it cannot be guaranteed to be Pareto
optimal.

Interactive decision making has become popular during the past several decades, and a
large number of methods have been developed in the literature (see an overview by Miet-
tinen, 1999, pp. 131–213). This is partly due to the more intensive involvement of decision
makers in the process of searching for alternative solutions. This process can lead to more
satisfactory final decisions (compared to prior approaches). However, interactive methods
are often based on the generation of a small number of alternatives and they therefore may
overlook important non-dominated solutions.

The third approach, called posterior articulation of preferences, does not require the
intensive participation of decision makers during the process of generating alternatives.
Instead, the application of this approach depends on methods that can be used to generate
a diverse set of Pareto optimal solutions that are evenly distributed on the Pareto front;
these solutions are subsequently presented to decision makers who make a final decision
about the problem by examining and negotiating about the merits of alternatives. Two
major difficulties have been identified as obstacles to the full application of this approach.
First, it has been difficult to develop solution methods that can effectively generate the Par-
eto front. Traditionally, prior articulation methods have been used to generate the Pareto
optimal solutions by systematically adjusting the associated parameters (e.g., preference
weights) in order to yield different solutions (Brill, Chang, & Hopkins, 1982; Cohon,
1978). The problem with this approach, however, is that it may overlook important solu-
tions, especially when the Pareto front contains concave, and/or discontinuous sections
(Cohon, 1978; Deb, 2001; Ehrgott & Gandibleux, 2000; see also Fig. 1) . Second, the exis-
tence of a large number of non-dominated solutions will impose a substantial cognitive
burden on decision makers who must somehow select a solution from the multitude of
alternatives.

An important advantage of the posterior approach is also clear: a full representation of
the Pareto front can present the true multiobjective structure of the problem, which may
lead to a better decision (Brill, 1979). If an intuitive and user-friendly decision support tool
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is available, stakeholders can concentrate on examining and negotiating tradeoffs among
interesting solutions (Jones, 1996; Lotov, Bushenkov, & Kameney, 2004). This approach
may also foster a wider participation from stakeholders because they may be able to find
‘‘niche’’ solutions that are beneficial to their view of a problem and its resolution.

The last two decades have seen rapid development in two fields that shed new light on
the use of posterior approaches. First, research has demonstrated the efficacy of evolution-
ary algorithms (EAs) as a new posterior approach to the generation of non-dominated
solutions (see Coello Coello, 2000; Coello Coello, van Veldhuizen, & Lamont, 2002).
EAs are heuristic methods that are more efficient than exact approaches and the literature
has shown that EAs can be used to yield a diverse set of non-dominated solutions to
approximate the Pareto front (Deb, 2001). The use of EAs in solving multiobjective spatial
problems has also been documented (Bennett, Xiao, & Armstrong, 2004; Stewart, Janssen,
& van Herwijnen, 2004; Xiao, Bennett, & Armstrong, 2002). A second new development is
related to the emergence of spatial exploratory data analysis, especially using visualization
techniques that enable users to examine unknown patterns in large spatial datasets (Ans-
elin, 1998; Dykes, MacEachren, & Kraak, 2005; MacDougall, 1992; MacEachren &
Kraak, 1997; Monmonier, 1989; Tukey, 1977). In the next two sections, we first review
general issues that arise when EAs are applied to multiobjective optimization problems
and then discuss how to incorporate EAs into a general framework that can be used for
spatial decision making.

3. Multiobjective evolutionary algorithms

Evolutionary algorithms include a family of computer algorithms that share a set of
common features. Different types of evolutionary algorithms include evolutionary strate-
gies (Rechenberg, 1965), evolutionary programming (Fogel, 1962), genetic algorithms
(Goldberg, 1989; Holland, 1975), and genetic programming (Koza, 1992). In general, these
algorithms are based on a computer version of the Darwinian notion of natural selection
and survival of the fittest. Different from traditional heuristic approaches that are prob-
lem-specific (see Cooper, 1964), evolutionary algorithms belong to a family of metaheuris-
tic methods that can be applied to a wide range of optimization problems (Reeves, 1993).
In addition to EAs, metaheuristic approaches generally include tabu search (Glover &
Laguna, 1997) and simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983).

The overall procedure of an EA is outlined in Fig. 2. In an EA, a solution to a problem
being addressed is encoded as an individual. Encoding strategies vary among the different
approaches. For example, a solution is encoded as a binary string in a genetic algorithm,
while real or integer numbers are used in other types of EAs. An EA contains a number of
individuals that collectively form a population of solutions. Initially, each individual is cre-
ated randomly (Step 1 in Fig. 2). An evaluation process is then used to assign each indi-
vidual a fitness value. Individuals that are better in terms of their objective function values
are assigned a high fitness value, and those with high fitness values are more likely to be
selected to create individuals in the next generation.

A new generation of individuals is created either by copying (fit) members without
alteration or by modifying them in an attempt to increase their fitness. A typical operator
that is used to modify members is called recombination, which combines information from
two selected parent individuals to create a new solution. The main search power of recom-
bination operations is based on the exploitation of existing (best) solutions. Searching for



Procedure EA
1 Initialize the population
2 Evaluate initial population
3 Repeat
4 Conduct selection
5 Apply evolutionary operators to generate new solutions
6 Evaluate solutions in the population
7 Until termination criteria are met

Fig. 2. A general EA procedure.

N. Xiao et al. / Comput., Environ. and Urban Systems 31 (2007) 232–252 237
optimal solutions, however, also needs to explore those parts of a solution space that have
not been represented in current solutions (Eiben & Schippers, 1998; Michalewicz, 1996).
Mutation operations accomplish this task by randomly modifying a (typically small) por-
tion of individuals in the current generation to yield new solutions. The new generation of
individuals is then re-evaluated using a fitness function and the processes of recombination
and mutation repeats until predefined termination rules (e.g., the total number of genera-
tions) are met.

A selection operation plays a critical role in an EA because it ‘‘encourages’’ individuals
with high fitness value to evolve toward an optimum. Multiobjective optimization requires
a special fitness assignment algorithm that accounts for the (non)domination status of
each individual. A widely used approach is called Pareto ranking (Goldberg, 1989), while
other methods are also available (see, for example, Fonseca & Fleming, 1993). The Pareto
ranking method sorts the population and assigns each individual a rank that indicates its
non-domination status. All non-dominated individuals in the current population are
assigned a rank value of 1. The remaining un-ranked individuals are re-evaluated and
those that are now non-dominated will be assigned a rank value of 2. This process contin-
ues until all individuals are ranked. For example, let us assume that the current population
consists of the individuals represented as open and solid circles in Fig. 1. In this popula-
tion, solid circle solutions will be assigned the rank of 1, unmarked open circle solutions
are ranked 2, and solution B is ranked 3.

A number of methods have been developed to convert Pareto ranks into fitness values,
with the intention of diversifying a population (Fonseca & Fleming, 1993; Horn, Nafpli-
otis, & Goldberg, 1994; Srinivas & Deb, 1995; van Veldhuizen, 1999; Zitzler & Thiele,
1999). Diversity in this case refers to the variation among individuals in a population
(Langdon & Poli, 2002, p. 248). Diversity is useful in EAs because a diverse population
can be used to prevent a few ‘‘good’’ solutions from dominating the entire population,
especially during early iterations when these good solutions are normally far from optimal.
Such diversity is particularly important if an EA is to be applied successfully to a multi-
objective optimization problem (Deb, 2001). Here, we describe the approach developed
by Srinivas and Deb (1995), though detailed discussion of other methods also can be
found (see Coello Coello, Van Veldhuizen, & Lamont, 2002; Deb, 2001). This technique
first assigns a fitness to each individual solution according to its rank. For example, solu-
tions represented by solid circles in Fig. 1 will be assigned the highest fitness value. Then,
the fitness value of each individual is modified by a niche count, measured by the number
of individuals in its neighborhood. The meaning of neighborhood is based on a distance
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measure defined in the objective space (e.g., Fig. 1) or decision space (e.g., the spatial sim-
ilarity between two alternatives). For a particular domination rank, a solution that is
located in a less crowded area of the objective or decision space (e.g., A in Fig. 1) will have
a higher fitness value than those in a crowded area (e.g., other solid circles in Fig. 1).

Recently, Xiao and Armstrong (2003) extended the ideas of population specialization
(Bennett, Armstrong, & Wade, 1996) and the island model of EAs (Martin, Lienig, & Coh-
oon, 1997) and developed a specialized island model (SIM) that can be used to effectively
diversify an EA population and thus find a greater number of non-dominated solutions. In
SIM, the entire population is divided into several subpopulations, each of which performs
a complete set of evolutionary operations. A subpopulation is not required to search for
solutions with respect to all objectives, however. Instead, some subpopulations are special-

ized to search for solutions with respect to a subset of original objectives. For example, for
a problem to minimize three objective functions (i.e., min[f1, f2, f3]T), a subpopulation can
be specialized in the first two objectives (i.e., its objective functions are min[f1, f2]T), while
all constraints of the original problem remain the same. A mechanism called migration is
used to send a number of individuals among subpopulations to increase the overall diver-
sity of each subpopulation by introducing ‘‘exotic’’ individuals from other subpopulations.
Applications of this approach have demonstrated that it can be used to find a higher pro-
portion of non-dominated solutions (see Armstrong, Xiao, & Bennett, 2003; Bennett et al.,
2004; Xiao & Armstrong, 2005).

Finally, we note that other metaheuristic approaches (e.g., tabu search and simulated
annealing) have also been used to address multiobjective optimization problems. These
approaches are developed based on a neighborhood concept. For an existing solution
to a problem, its neighborhood is formed by solutions that are considered to be close in
the solution space (Glover & Laguna, 1997; Kirkpatrick et al., 1983). The neighbors of
a solution can be obtained by adjusting a portion of that solution (see Anderson, 1996).
In these metaheuristic methods, an initial solution is improved by iteratively moving it
to another (mostly better) solution in its neighborhood. This approach is similar to prior
methods in which the multiple objectives are converted to a single objective (see Ehrgott &
Gandibleux, 2000). Recent developments have been focused on approximating the Pareto
front in a more systematic manner (Ben Abdelaziz, Chaouachi, & Krichen, 1999; Czyzzak
& Jaszkiewicz, 1998; Duh & Brown, this volume; Gandibleux, Mezdaoui, & Fréville,
1997). This new strategy normally includes two phases. In the first phase, the algorithm
maintains an individual solution that tends to move to a dominating neighbor solution
until no such solution can be found in the neighbors. In the second phase, the algorithm
encourages the individual solution to move to non-dominated neighbor solutions. The sec-
ond phase stops when no non-dominated solution can be found in the neighborhood.
Though these approaches are effective for some particular cases, they have not been fully
tested using benchmark multiobjective optimization problems (see Deb, 1999), and their
application in spatial problems has been limited. Consequently, in this paper, we focus
on EAs as a posterior means of solving multiobjective spatial decision problems.

4. A conceptual framework for multiobjective spatial decision making

A general, theoretical framework for decision making can be constructed based on the
pragmatic approaches that have been established by philosophers who were concerned
with a search for solutions to problems. Dewey (1910), for example, has argued that three
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steps are typically followed when decisions are made: what is the problem, what are the
alternatives, and which alternative is best? Simon (1960) concurred with the three main
steps in decision making, though he used different names: intelligence, design, and choice.
These three steps have been adopted and extended in a variety of decision support frame-
works (Brightman, 1978; Densham, 1991; Cameron & Abel, 1996; Jankowski & Nyerges,
2001). In this paper, we base our conceptual framework on Simon’s traditional three steps,
which are more closely tied to the distinction between design (searching for optimal solu-
tions) and application (determining a suitable final solution). More specifically, our con-
ceptual framework for multiobjective spatial decision making is created from the
perspective of evolutionary algorithms and exploratory data visualization techniques.
Fig. 3 illustrates the fundamental elements of this framework, as well as the three steps
suggested by Simon (1960). In this section we discuss two major components of this frame-
work. We first discuss issues in the design and implementation of EAs for alternative gen-
eration. Hybridization between EAs and other approaches will also be discussed below.
We then discuss the role of visualization techniques in helping decision makers understand
problem structures and tradeoffs among alternatives. The first component of this frame-
work (i.e., problem formulation) is not a particular focus of this paper, and we discuss
it in a problem-specific manner in Section 5.
4.1. Generation of alternatives using evolutionary algorithms

In the context of evolutionary algorithms, problems are formulated differently than
they are in traditional linear programming models, though the general mathematical form
of a problem still holds (Eq. (1)). For an EA, a problem is more directly formulated in an
algorithmic manner: an appropriate data structure is designed to encode solutions, and
evolutionary operations are specified to handle constraints. The fitness evaluation
techniques discussed in the previous section can be generally applied to a broad range
Problem Formulation

Spatial/aspatial Encoding

EA Architecture

Operation Design

Parameter Specification

EA Design and Implementation

Visual Support System

Exact Approaches

Monte-Carlo Simulation

Application

Other Approaches

Heuristic Approaches

{Intelligence}

{Design}

{Choice}

Fig. 3. A conceptual framework of using evolutionary algorithms for multiobjective spatial decision making.
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of problems. To address spatial multiobjective problems, we focus on representation strat-
egies and the implementation of evolutionary operations.

Hosage and Goodchild (1986) first used a genetic algorithm to address the p-median
problem, with a goal to locate p facilities in a spatial network of n nodes such that the total
distance between each node and its closest facility is minimized. In their approach, a bin-
ary string with a length of n was used to represent a solution to the problem. If the number
of bits with a value of 1 in a string is greater than p, its original fitness value was decreased
using a penalty function. Their results, unfortunately, tended to be trapped in local optima
even for small problems. Later, researchers (Bianchi & Church, 1993; Dibble & Densham,
1993) used a string of p integers to represent the location of the p facilities in a solution,
and ‘‘extremely good, if not optimal, solutions’’ were found (Church & Sorensen, 1996).
Though recent developments on the same subject have demonstrated that improved per-
formance can also be gained through the design of new operations (Bozkaya, Zhang, &
Erkut, 2002; Estivill-Castro & Torres-Velázquez, 1999; Jaramillo, Bhadury, & Batta,
2002), the use of integer strings to represent spatial problems has become a common
choice in this area of EA research.

For spatial problems that are subject to more complicated spatial constraints (such as
contiguity), however, modifications to the above representation strategy is needed. Krza-
nowski and Raper (1999), for example, addressed the problem of locating transmitters for
wireless networks using a genetic algorithm, in which the location and radius of a trans-
mitter are represented as a tuple of (x,y,R). A string of such tuples is used to encode a
solution to the problem. To search for an optimal set of contiguous cells in a raster
map, Brookes (2001) designed a genetic algorithm in which each individual consists of a
number of parameters that are used by a region-growing algorithm (Brookes, 1997) to cre-
ate a site. These approaches, though effective, are ad hoc because they can only be applied
to a particular type of problem. In an attempt to develop a more general framework that
can be used for a broad range of geographical problems, Xiao et al. (2002) and Xiao
(2006) designed a representation strategy based on graph theory. In this approach, a string
of integers is used to indicate spatial units. Moreover, the spatial connectivity of each spa-
tial unit is maintained. Based on this representation, evolutionary operations can be
designed to satisfy spatial constraints.

A variety of evolutionary operations (recombination and mutation) have been devel-
oped in the literature, each of which is particular to the encoding strategy used, though
some common traits can still be observed. The design of recombination operations is often
tightly related to the specification of spatial constraints, a critical issue in evolutionary
algorithm research (Deb, 2001; Michalewicz, 1996). In general, two major approaches
can be identified. The first type exhibits ‘‘evolutionary’’ characteristics because it relies
on a penalty function to discourage the promotion of infeasible solutions to subsequent
generations. Though this approach has been successful in many numerical optimization
applications (Michalewicz, 1996; Xiao & Armstrong, 2005), it has not been fully tested
for spatial problems; the experiments by Hosage and Goodchild (1986), for example, were
unsuccessful.

The second type of approach to constraint handling is based on the development of spe-
cific evolutionary operations (in combination with encoding strategies) to ensure that (1)
only feasible solutions are encoded, and (2) only feasible solutions may result from evolu-
tionary operations. A typical example of this approach is the ‘‘greedy crossover’’ devel-
oped by Grefenstette, Gopal, Rosmaita, and van Gucht (1985) to solve the traveling
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salesman problem using a genetic algorithm in which the crossover operation only creates
a feasible solution (a tour that traverses every location in an area without cycling). This
type of approach is adopted for most spatial optimization problems. For example, to solve
the p-median problem using evolutionary algorithms, traditional single- or multi-point
crossover mechanisms have been employed. However, these operations are often modified
to ensure that the results of a recombination will yield a feasible solution (Bennett et al.,
2004; Bozkaya et al., 2002; Dibble & Densham, 1993).

When spatial constraints are required, more sophisticated operations may be needed.
For example, to solve site search problems, a site is formed by a contiguous set of selected
land parcels, meaning that one can move from one selected parcel to another without leav-
ing the site. To maintain the contiguity of a solution, Xiao (2006) developed an operation
that locally adjusts the shape of a site by removing a land parcel from and then adding a
new land parcel to the site. Both removal and addition processes can only be performed if
doing so will not create an infeasible (non-contiguous) site. This operation is called ‘‘local
search’’ by Xiao (2006), though it should be noted that such an operation can be consid-
ered as an asexual crossover or transposition that modifies a single solution to create a new
one (see Simões & Costa, 2000). This operation is different from a mutation and is con-
ducted based on the fitness function value of a particular solution.

Mutation operations are used to help the overall search escape local optimal traps. The
most commonly used mutation operations in spatial problems are similar to the ones in
traditional genetic algorithms, which alter a small portion of an encoding to create a
new solution. Unlike recombination operations, mutation is only occasionally conducted
because a mutation may disturb current individual solutions by introducing harmful
‘‘noise’’. For example, a typical EA would allow a small portion (e.g., about 1 percent)
of the individuals in a population to experience a mutation operation (Michalewicz,
1996). However, the occasional use of mutation makes the overall search more explor-
atory, meaning that new genetic materials are introduced into the current population of
solutions. Studies have shown that an EA cannot return high-quality solutions when
mutation operations are not implemented (see Goldberg, 1989; Xiao, 2006).

Finally, we note that while the focus of this paper is placed on evolutionary algorithms,
other solution approaches can be incorporated into EAs to improve their performance.
For example, Bennett et al. (2004) used results from integer programming to form a subset
of initial solutions for an EA. Their results suggest that this strategy can expedite the con-
vergence of the EA. In many applications, a Monte Carlo approach that randomly gener-
ates alternative solutions can also be useful because these random solutions can be used to
reveal the general scope of the solution space (see Armstrong et al., 2003). The general idea
of incorporating other methods (including heuristics) into EAs follows the trend of hybrid-
ization between evolutionary algorithms and other local search algorithms (Anderson,
1996; Preux & Talbi, 1999; Voss, Martello, Osman, & Roucairol, 1999). Previous research
has shown that the use of hybridization strategies in EAs can greatly improve EA perfor-
mance (Estivill-Castro & Murray, 2000a, 2000b; Krzanowski & Raper, 1999; Lin, Hwang,
& Wang, 2001; Ruiz-Andino, Araujo, Sáenz, & Ruz, 2000; Zhang & Armstrong, 2005).

4.2. Visual support tools

The use of visualization techniques has long been considered a critical component for
optimization in general (Jones, 1996; Lotov et al., 2004), and spatial decision support
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systems in particular (Armstrong, Densham, Lolonis, & Rushton, 1992; Armstrong & Lol-
onis, 1989; Densham, 1994; Jankowski, Andrienko, & Andrienko, 2001; Malczewski,
1999; Malczewski, Pazner, & Zaliwska, 1997). In the context of spatial decision making,
the connection between a solution and its objective function values must be made so that
decision makers can examine alternatives interactively. To achieve this goal, it is necessary
to understand the relationship between the decision space and the objective (or criteria)
space (Church, Loban, & Lombard, 1992; Schilling, ReVelle, & Cohon, 1983).

For many numerical optimization problems, plotting solutions under consideration is
an intuitive way to provide context. When decisions have a geographical component, how-
ever, it is also intuitive to adopt cartographic and other visualization techniques to present
alternatives (Armstrong et al., 1992; Malczewski et al., 1997). Recently, Bennett et al.
(2004) used the term geographical space to refer to the set of all possible spatial patterns
(represented as maps) of alternative solutions.

Since decision and objective spaces may have a high dimensionality, a set of visualiza-
tion techniques has been developed to convert high dimensional information into forms
that humans can easily examine. In particular, scatterplot matrices and parallel coordi-
nates are often used (Anselin, 1998; Buja & Cook, 1996; Swayne, Cook, & Buja, 1998).
In a scatterplot matrix, the number of rows (or columns) equals the number of dimensions
of the information displayed. Four variables, for example, require a 4 by 4 matrix, in
which a non-diagonal cell at the ith row and the jth column contains a plot with the
two axes formed by the ith and jth variables. Scatterplot matrices are effective in projecting
high dimensional data into two dimensional space, and they are commonly used in many
statistical software packages. However, it is difficult for users to gain knowledge about the
overall relationships that are exhibited among alternatives with respect to all objectives.

An alternative to the scatterplot matrix approach is parallel coordinates (Buja & Cook,
1996; Inselberg, 1981). To display n-dimensional information, n vertical lines are drawn;
each vertical line is an axis that represents a dimension of the information. Fig. 4 illustrates
the use of this technique in a multiobjective optimization context, where the space of six
objectives is visualized using six parallel coordinates and each vertical line represents an
objective. The objective function values of a solution are linked to form a line, which is
called a value path (Melachrinoudis et al., 1995; Schilling et al., 1983). Suppose the overall
objective is to minimize the six objectives. In Fig. 4, the solution corresponding to value
path a is dominated by all other solutions, the solution corresponding to value path d is
a
b

c

d
e

1                       2 3 4 5
f                  f                 f f                 f f

6

Fig. 4. A parallel coordinate plot with six dimensions.
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dominated by e, and solutions corresponding to other value paths (b, c, and e) are non-
dominated ones. The disadvantage of parallel coordinates is that a different ordering of
the coordinates may yield different visual impressions.

To fully support interactive decision making, the displays described above (maps, par-
allel coordinates, and scatterplot matrix) must be linked so that when a decision maker
selects a certain value path, for example, the system should simultaneously display the
selected solution in the scatterplot matrix and map. This technique, called brushing, or
more specifically in our context, geographical brushing, has been used in a variety of visu-
alization applications (Dang, North, & Shneiderman, 2001; Gahegan, Takatsuka,
Wheeler, & Hardisty, 2002; Monmonier, 1989). A more general approach to linking multi-
ple views is demonstrated by Carr (2001).

In addition to linking visual displays together, another key feature in a user-friendly
visual support system is the ability to allow users to search for similar or dissimilar alter-
natives. This feature is particularly important when a large number of alternatives are cre-
ated and presented to decision makers. This approach can be observed in our daily life
experiences. For example, Amazon.com will automatically (with classification algorithms
running behind the scene) present similar book titles to a customer who is viewing a cer-
tain title; libraries often display books in a same category together on a shelf. For multi-
objective spatial decision problems, we identify four types of similarity/dissimilarity
among any two alternatives (see also Fig. 5):

• Type I. The two alternatives that are similar in objective space are also similar in geo-
graphical (or decision) space.

• Type II. Two solutions are different in objective space and are also different in geo-
graphical space.

• Type III. Two similar solutions in objective space are different in geographical space.
• Type IV. Two alternatives that are similar in geographical space are different in objec-

tive space.

Types I and II represent ‘‘normal’’ cases for many solutions because given two solutions
that are close (far away) in an objective space, a user would expect them to be close (far
away) in a geographical space. Types III and IV, however, are more unusual because they
represent circumstances when two alternatives are close in one space but different in the
other. Though these types may not be common in our analogy of online shopping or
library browsing, they are important for multiobjective spatial decision making because
Geographical Space
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Fig. 5. Four types of similarity and dissimilarity of alternatives.
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alternatives with a similar spatial pattern (in geographical space) but different objective
function values (in objective space), or vice versa, can be presented to decision makers
so that tradeoffs among them can be fully discussed (Bennett et al., 2004).

The above discussion raises the important issue of measuring similarity between alter-
natives. Bennett et al. (2004) explored measures that define the similarity of two alterna-
tives in objective space using Euclidean distance in a multi-dimensional space formed by
objectives. The similarity (or distance) between two alternatives in terms of their geo-
graphical patterns is calculated as the summation of a binary variable tj over all spatial
units. The value of tj is 1 if the jth spatial unit is assigned to a same land use type for both
alternatives. Xiao and Armstrong (2005) have suggested that this type of measure can be
weighted by the area of spatial units.

The techniques discussed above can be used as the core components of a visual support
system for multiobjective spatial decision problems, though we note that additional visu-
alization tools (such as color rendering and animation) can also play a significant role. A
prototype of such a system is illustrated in Fig. 6. Though basic features of this prototype
Previously Viewed Alternatives
Maps of Current and

Type I Alternatives

Type II Alternatives

Type III Alternatives

Type IV Alternatives

List of Alternatives

Parallel Coordinate Plot

Scatterplot Matrix

O2

O3

O4

O1

O1 O2 O3 O4

Fig. 6. A prototype of a visual support system for multiobjective spatial decision.
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can be found in visual systems reported in the literature (see, for example Andrienko &
Andrienko, 1999; Gahegan et al., 2002; Jankowski et al., 2001; Xiao & Armstrong,
2006), some unique design features should be noted. First, the visual system must store
the recently viewed alternatives and their maps so that decision makers can switch back
and forth for comparison (similar to the trace function for group decision support systems
suggested by Armstrong (1993)). We use a metaphor of the map stack (see Bruns & Ege-
nhofer, 1997) for this purpose in Fig. 6, though other visualization techniques such as the
perspective wall (Mackinlay, Robertson, & Card, 1991) or translucent window (Packard,
2000) are also useful. Second, four series of maps are arranged horizontally at the bottom
of the prototype; each series represents the alternatives that belong to one of the four sim-
ilarity/dissimilarity types related to the alternative currently viewed in the main map win-
dow in the upper-left corner. Maps arranged in this way are called small multiples, a
design concept that is an effective visualization tool for data exploration (Tufte, 1990).
When a user changes the current alternative, its similar/dissimilar alternatives can be
dynamically queried from the database that contains all non-dominated alternatives and
then displayed (Ahlberg, Williamson, & Shneiderman, 1992).
5. Review of applications

Evolutionary approaches have been applied to a variety of spatial decision problems
such as land use and environmental policy (Bennett et al., 2004; Stewart et al., 2004), land
acquisition (Aerts, van Herwijhen, Janssen, & Stewart, 2005; Xiao et al., 2002), routing
(Guimarães Pereira, 1996; Zhang & Armstrong, 2005), and urban and regional planning
(Balling, Taber, Brown, & Day, 1999; Feng & Lin, 1999). Here, we focus on two represen-
tative examples that demonstrate the utility of EAs during interactive geographical prob-
lem solving and the application of the interactive approach discussed in this paper. The
applications are based on a Pareto search for solutions to multiobjective problems (i.e.,
scalarization techniques are not used).

Feng and Lin (1999) developed a genetic algorithm that can be used to generate Pareto
optimal alternative sketch maps for urban planning. In their context, a sketch map serves
as a guideline when a new town is planned for construction in an undeveloped area. A
sketch map, often in a coarse spatial resolution, specifies possible configurations of land
use (e.g., residence, commerce, and industry) and transport networks for each spatial unit
(cells). Based on a sketch map, a more detailed layout, called a development map, will be
subsequently created by developers and planners. In their application, two objectives are
defined. The first is to maximize environmental harmony, and the second is to maximize
development efficiency. A feasible solution to this problem must satisfy three constraints:
each cell must be assigned a land use and links to a transport network, all land uses must
be assigned to the cells in a planned area, and at least one transport path must exist
between any two cells in the area.

A binary encoding strategy was used by Feng and Lin (1999) to represent a feasible
solution. A string of 3 · I · J + E bits are used, where I and J are, respectively, the number
of columns and rows, and E is the number of potential connections for each cell. A cell
may be connected to four neighbors (up, down, left, and right). The entire string is orga-
nized as follows:

a11b11c11a21b21c21 � � � aijbijcij � � � aIJ bIJ cIJ d1 � � � dE;
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where aij, bij, cij, and de are binary variables. The land use assigned to the cell at column i

and row j is one of the eight values calculated as aij2
0 + bij2

1 + cij2
2. In this application, de

is 1 if the eth potential link is used in the plan.
Feng and Lin (1999) designed a set of evolutionary operations to search for optimal

solutions, while maintaining feasibility. The feasibility of a solution can be easily checked.
During the initialization step, the operation is repeated until a specified number of initial
feasible solutions is created. The recombination operation creates two new individuals by
exchanging two bits that are randomly picked from two parent solutions. A mutation
operation is used to randomly reverse a bit in a solution. Infeasible new individuals are
ignored and the processes of recombination and mutation repeat until the required num-
ber of new individuals are created. The fitness value of each individual is then calculated
using a method similar to the Pareto-rank approach described above. Feng and Lin (1999)
applied their genetic algorithm to a case study in a new town, Tanhai, Taiwan. The
planned area contains 40 cells, each of which has an area of approximately 100 ha. They
identified four non-dominated solutions and all are better (in both objectives) than the offi-
cial sketch layout.

Our second example application is related to environmental policies in a study area
located in Cache River watershed in southern Illinois (Bennett et al., 2004). In this area,
environmental policies such as the conservation reserve program (CRP) play an important
role in restoring original swamps that are considered to exhibit high environmental bene-
fits such as reducing non-point pollution. In this study area, three major stakeholders with
different objectives were identified. Government agencies (the United States Department
of Agriculture, or USDA) wish to maximize environment benefit; local farmers seek to
maximize income; and the general public are interested in minimizing public investment.
Each of these objectives can be quantitatively defined.

Bennett et al. (2004) developed an EA to search for landscapes that are of interest to
different stakeholders. Here, a landscape consists of 961 farm fields. A farm field can be
assigned to one of 16 land use types (corn, soybean, wheat, hay, double crop, and 11 other
CRP cover types ranging from grass to wetland restoration). In addition, USDA guide-
lines require that only 25 percent area of a region can be enrolled in the CRP. In their
EA, an individual solution is encoded as a string of 961 integers, where the value of each
integer ranges from 0 to 15. The recombination operation is based on a single-point cross-
over. Three mutation operations were designed to randomly change a portion of the farm
fields from one land use type to another. If an individual solution has more than 25 per-
cent of its overall area enrolled in the CRP, a repair mechanism is used to randomly switch
farm fields from CRP types to a crop type. Individuals are evaluated using an approach
similar to the niching and sharing method described above.

Bennett et al. (2004) illustrated the efficacy of their EA in finding optimal or near-opti-
mal solutions by comparing the EA outcome with results from an integer programming
model. The integer programming approach is based on a series of weighting schemes that
represent different stakeholder preferences. For many schemes, however, the integer pro-
gramming model could not return feasible solutions.

Finally, Bennett et al. (2004) developed an interactive visualization tool that provides
several of the functions illustrated in Fig. 6. This tool includes a list of alternatives and
a scatterplot of the objective space. To help users identify interesting alternatives, similar-
ity between alternatives is measured in both objective and decision spaces. An alternative
can be selected by highlighting a point in the scatterplot or in the list, and a map of the
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selected alternative can be drawn subsequently. Points in the scatterplot can be rendered
using a gray scale where alternatives with similar spatial pattern or objective function val-
ues to the currently selected one are displayed in a dark gray. Using this system, a user can
examine the tradeoff among alternatives by comparing their objective function values and
visualizing their spatial configurations using maps.

6. Discussion and conclusions

Researchers have developed three major alternative generating approaches with respect
to how preferences are articulated: prior, interactive, and posterior. The research reviewed
in this paper comprises an interactive evolutionary approach that does not necessarily fall
into a particular category. Instead, it represents a new paradigm of multiobjective problem
solving, as described by Casti (1997, p. 171): ‘‘you don’t solve it, you evolve it.’’

The generation of high-quality alternatives is a key to the success of multiobjective spa-
tial decision making. The methodological essence of evolutionary algorithms is based on a
process of evolution from initially random individual solutions toward a diverse set of
optimal, or near-optimal solutions. Because EAs are population based, it is possible to
design algorithms to encourage the emergence of diversity and optimality. Though we note
that other heuristic methods (such as simulated annealing) share the same evolutionary
spirit, evolutionary algorithms are particularly appropriate for multiobjective decision
making.

The use of visual support systems in the context of multiobjective spatial decision mak-
ing is also consistent with the evolutionary perspective. The process of exploring alterna-
tives is one of abduction, or ‘‘inference to the best explanation’’ (Josephson & Josephson,
1994, p. 5), and is consistent with the views espoused by Simon (1960) and Dewey (1910).
The visual techniques and framework reviewed in the paper can be used to help decision
makers discover the competing nature of different objectives and the tradeoffs among
alternatives. Substantial knowledge about the problem can evolve via experiments using
the visual system.

To fully benefit from the conceptual framework set forth in this paper, however, a num-
ber of critical issues require further investigation. Here, we identify three important future
research topics. We believe that by addressing these issues, decision makers will be
equipped with more effective tools to solve multiobjective spatial decision problems.

1. A graph theory based representation strategy is a ‘‘natural’’ way to encode solutions to
spatial optimization problems in an EA. Though empirical studies have demonstrated
the effectiveness of this strategy in finding optimal or near-optimal solutions, a theoret-
ical analysis of convergence using this encoding strategy is still needed. Previous
research on other representation strategies (especially binary strings, see Goldberg,
1989 & Nix & Vose, 1992) can be used as an example for such theoretical work.

2. Spatial optimization problems often have constraints that are difficult to translate into
mathematical forms. Though evolutionary algorithms have proven to be effective in
addressing such constraints, a unified approach to constraint handling for a wide range
of spatial problems would be useful.

3. The evolutionary algorithms and visualization techniques discussed in this paper have
been separately implemented in different forms, and efforts are needed to integrate them
into a more coherent system that can be used to address spatial applications. Xiao and
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Armstrong (2006) have demonstrated the use of object oriented programming tech-
niques to implement an EA that can be applied in other cases. EA results can be stored
in computer files that will be subsequently loaded into a visual support system. Though
such a file level integration is sufficient for some application cases, it may not be suitable
for applications that involve stakeholders from a variety of backgrounds with different
technical skills. Given the increasing availability of geographical information systems
(GIS), integrating multiobjective spatial decision tools into GIS and other visualization
systems is a fruitful direction for future work.
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