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Abstract

There is a long cartographic tradition of describing cities through a focus on the characteristics of their residents. A review of the
history of this type of urban social analysis highlights some persistent challenges. In this paper existing geodemographic approaches
are extended through coupling the Kohonen Self-Organizing Map algorithm (SOM), a data-mining technique, with geographic informa-
tion systems (GIS). This approach allows the construction of linked maps of social (attribute) and geographic space. This novel type of
geodemographic classification allows ad hoc hierarchical groupings and exploration of the relationship between social similarity and geo-
graphic proximity. It allows one to filter complex demographic datasets and is capable of highlighting general social patterns while
retaining the fundamental social fingerprints of a city. A dataset describing 79 attributes of the 2217 census tracts in New York City
is analyzed to illustrate the technique. Pairs of social and geographic maps are formally compared using simple pattern metrics. Our
analysis of New York City calls into question some assumptions about the functional form of spatial relationships that underlie many
modeling and statistical techniques.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In gearing up for the first United States decennial census
in 1790, James Madison argued that the census should be
‘‘extended so as to embrace some other objects besides
the bare enumeration of the inhabitants; it would enable
them to adapt the public measures to the particular circum-
stances of the community” (Kurland & Lerner, 1987, p.
139). Madison’s idea, that knowing something about the
characteristics of local populations improves local gover-
nance is accepted as a basic premise in planning, politics,
and policy analysis. However how one understands the
particular circumstances of a community is a methodolog-
ical question that has been evolving for over a century.

Madison’s proposal to extend the census to include the
occupations of inhabitants was rejected by the United
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States Senate in 1790. In a letter to Jefferson, Madison
reflected that his plan was ‘‘thrown out by the Senate as a
waste of trouble and supplying materials for idle people
to make a book” (Cohen, 1981, p. 47). Unlike in Madison’s
day, data about cities and the people who live in them is
now abundant; in fact data are so abundant and complex
that integrating available information into the public plan-
ning processes is often difficult. The first census asked five
questions; the long form of the questionnaire for the 2000
decennial census of population was 10 pages long and
included over 50 questions. Many municipalities now main-
tain detailed datasets describing crime, traffic, school per-
formance, the built environment, and many other facets
of urban life. The volume of data currently available to
planners is excellent fodder for urban scholars. Yet, it
remains a challenge to communicate the complexity of the
urban social landscape in an engaging and efficient manner.

In addition to a dramatic increase in the volume of
information, new forms of analysis that emphasize an
exploratory approach and are based on computational
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principles have become commonplace. Data mining is ‘‘the
extraction of implicit, previously unknown, and potentially
useful information from data” (Witten & Frank, 2005, p.
xxiii). Machine learning techniques of data mining, while
still seldom used in urban analysis, have the potential to
help analysts develop detailed differentiation of the urban
landscape. In contrast to more conventional multivariate
statistical methods such as factor analysis, principal com-
ponent analysis, and multidimensional scaling, they tend
to be less bound by a priori assumptions. Geographic
Information Systems, on the other hand, are widely used
in urban analysis because they facilitate cartographic visu-
alization and management of geographically referenced
data.

Our goal in this paper is to revisit the problem of
describing communities through a focus on the characteris-
tics of residents. The history of residential segregation by
race and income in America has supported the use of very
general colloquial descriptions of neighborhoods that focus
almost exclusively on combinations of these two factors.
We present a novel application of geographic information
systems by integrating them with a data-mining technique
to characterize populations in urban areas using large
datasets. The Kohonen Self-Organizing Map algorithm
(Kohonen, 1997) is used to develop a geodemographic clas-
sification of a dataset containing 79 attributes describing
census tracts in New York City. The Self-Organizing
Map extends current geodemographic practice by allowing
the formalization of spatial relationships between physical
(geographic) space and social (attribute) space. The result
is a typology of census tracts presented as a pair of linked
maps – one representing social space and another repre-
senting geographic space. These maps capture the complex-
ity of New York’s social landscape and provide insight into
the relationship between geographic proximity and social
similarity at the census tract level. The relationship between
proximity and similarity has potentially important implica-
tions for modeling and statistical techniques that drawing
on Tobler’s (1970) First Law of Geography make assump-
tions about the functional form of spatial relationships.

2. Maps and Neighborhood Typologies

Since the turn of the previous century, advocates and
social scientists have been mapping the socioeconomic var-
iation in cities through looking at residential patterns.
Charles Booth’s poverty maps of London are a classic
effort to map this social landscape. Booth, working
between 1886 and 1903, classified London’s streets as using
seven categories: wealthy, well-to-do, fairly comfortable,
mixed, poor, very poor, and vicious, semi-criminal (Booth,
1902).

In spite of the abundance and complexity of spatial data
describing the US population in the planning and policy
context, one often finds that we have not moved very far
beyond Booth’s classification system. Neighborhoods are
often differentiated using just a few attributes – the income,
race, and occupation of inhabitants and the density of the
built environment. Descriptive terms like ‘‘working class
suburbs” and ‘‘poor inner city” evoke images of prototyp-
ical neighborhoods. Among the residents of a given city,
neighborhood names are often signifiers of subtle differen-
tiations in social and physical landscape. These subtle dis-
tinctions are often hard to communicate to non-residents
and may not be commonly understood by residents.

In the modern context, the most sophisticated efforts to
classify populations are known as geodemographic or mar-
ket segmentation systems. Geodemographic systems clas-
sify small areas into discrete categories using consumer
behavior, lifestyle, and demographic data. These tools are
widely used in the commercial sector and multivariate
social classifications of ‘‘neighborhoods” has become an
international industry (Harris, Sleight, & Webber, 2005;
Longley & Clarke, 1995). Unfortunately, since market seg-
mentation is a competitive, commercial enterprise, the spe-
cifics of the methods and data used in the construction of
these proprietary systems is often obscure.

As described by Harris et al. (2005), the geodemographic
approach is essentially a data reduction technique. A stan-
dard methodology involves using a weighted k-means algo-
rithm to develop initial clusters. Census administrative
districts (rows) are weighted by their residential population
and variables (columns) are weighted by the analyst accord-
ing to their perceived importance or to minimize correlation
effects. K-means is a simple type of cluster analysis where
the user chooses a desired number of clusters, k, and then
observations are assigned to clusters based on their proxim-
ity to the cluster means. The initial cluster centers can be
randomly assigned by the algorithm or manually specified,
the initial centers may have a significant effect on the result-
ing classification. The procedure is iterative and generally
ends once the clusters become stable. In the approach out-
lined by Harris et al. (2005), areas are weighted based on
their population and variables are weighted based upon
how important the variable is in distinguishing different
types of consumers. The result is that each neighborhood
(usually treated as some type of census or administrative
area) is assigned to one and only one of a predetermined
number of clusters representing similar types of neighbor-
hoods. Some geodemographers (Feng & Flowerdew, 1998,
1999) have also successfully experimented with fuzzy clus-
tering techniques, in which each neighborhood belongs to
varying degrees to each of the clusters.

In the private sector geodemographers then assign evoc-
ative titles to each cluster. Names like ‘‘American Dreams”

and ‘‘Multi-Culti Mosaic” are used by the PRIZM lifestyle
segmentation system in the United States (Curry, 1993;
Weiss, 1989). These clusters are described with ‘‘pen pic-
tures,” short one-paragraph descriptions of the discrimi-
nating characteristics of each cluster. The user interacts
with the system through the category titles. Commercial
geodemographic systems divide the national population
into discrete classes based on variables useful for describing
consumption patterns; they are tools primarily designed for
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‘‘differentiating between different categories of rich people”

(Webber, 2004, p. 220). This is an interesting contrast to
Charles Booth who was interested in differentiating differ-
ent classes of poor people (worthy vs. unworthy poor)
(Ward, 1990). The bias toward descriptions of specific
sub-populations is not inherent in geodemographic analysis
and is absent from the UK Office of National Statistics
geodemographic classification of census output areas. The
2001 output area classification simply (or not so simply)
aims to describe the entire population of the UK using a
hierarchical classification that has 52 groups at the lowest
level and 7 at the coarsest level of aggregation. This classi-
fication avoids the use of cluster labels and instead uses
numbers to label classes. Pen pictures are matter of fact
summaries of the distinguishing elements of each cluster.
The variables used in this analysis are selections from
Key Statistics Tables for the 2001 census of the UK (Vick-
ers, Rees, & Birkin, 2005).

Batey and Brown (1995) and Harris et al. (2005) see
modern geodemographic systems as rooted in a conceptu-
alization of neighborhood based on the human ecologic
approach of the Chicago School: ‘‘geographical units dis-
tinguished by both physical individuality and by the social
and cultural characteristics of the population” (Batey &
Brown, 1995, p. 78). The approach used by Booth and geo-
demographic systems, i.e., named categories, is not the only
way to develop multidimensional classifications of urban
areas. Some of the earliest classifications of census tracts
in the human ecologic tradition were done by Eshref Shev-
ky in the 1940s in Los Angeles using seven variables and
over three hundred census tracts. Shevky created three
indices by computing percentiles for seven variables. The
first index measured urbanization, the second measured
segregation, and the third measured ‘‘social rank.” Shevky
ranks places and then compares places to each other and to
the city-wide average. He also groups places that have sim-
ilar ranking on each of the three dimensions. His 1949
book includes extensive tables reporting these results. Shev-
ky hoped that by developing a typology of urban places
through a focus on local characteristics one could build a
more robust understanding of urban systems in industrial-
ized societies (Shevky & Williams, 1972).

Shevky’s early work on social area analysis was instru-
mental in the emergence of ‘‘factorial ecology” as a line
of inquiry. The term, factorial ecology, emerged in the
mid-60s and refers to the use of factor analysis to differen-
tiate areal (ecological) units using the characteristics of res-
idents (Janson, 1980). Factorial ecologies most typically
describe the characteristics of urban areas through an anal-
ysis of census tracts, however, during the heyday of facto-
rial ecology, factor analytic approaches were widely used to
describe patterns of areal differentiation at various geo-
graphic scales (Berry, 1971; Rees, 1971; Johnston, 1976).

Factor analysis is a method to reduce a large matrix of
units of observation and their attributes to a smaller num-
ber of factors. Berry (1971) uses the following analogy to
describe the factor analytic approach (p. 215–216):
‘‘If there are n areas and m variables, an n � m matrix is
used to list the manifest evidence. An atlas comprising m
plates could also depict the variations. Factorial methods
are brought into play to determine the latent structure of
dimensions of variation – the repetitive sequences – under-
lying the manifest experiences of the atlas.”

The smaller matrix is a more concise description of the
economic and demographic variability of census tracts.
Factor scores are sometimes described as ‘‘latent” or ‘‘fun-
damental” variables. Interpretation of latent variables is a
matter of some debate, some use latent variables to explain
urban residential patterns (Ward, 1969) while others simply
saw them as concise descriptions of patterns (Rees, 1971, p.
221). The former view is particularly controversial.

In the explanatory mode factor scores are interpreted as
representations of theoretical constructs (Berry, 1971; Jan-
son, 1980). Many independent analyses found that residen-
tial areas in Western industrialized cities, particularly those
in the United States, were differentiated by three factors;
one describing racial and ethnic segregation, another
describing socioeconomic status, and a third describing
one’s point in the lifecycle. This three-factor view is rooted
in Shevky’s early analysis of Los Angeles and is known as
the Shevky–Bell hypothesis (Janson, 1980). While factor
analysis is not a confirmatory statistical technique, the fact
that some form of the Shevky–Bell factor structure
emerged from many urban analyses was seen as support
for this view of urban spatial structure. Palm and Caruso
(1972) saw this argument as a form of ‘‘speculative synthe-
sis.” A factor consists of many variables, each one weighted
differently. Palm and Caruso argue that the labels used to
describe factor scores generally focus on only a few of
the variables loaded on that particular factor (Palm & Car-
uso, 1972). Their indictment of factor analysis is extensive
and beyond the scope of this paper. For our purposes here,
it is interesting to note that their criticism of the ‘‘crudeness
of classification” in factor analysis could be extended both
to modern geodemographic systems and early geographic
studies of urban populations. Where factor analysis com-
presses a large number of variables into a smaller number
of factors geodemographic systems accomplish a similar
end by grouping a large number of observations into a
smaller number of groups. The ‘‘speculative synthesis”

enters factor analysis in determining the meaning of the
latent variables. The speculative enters geodemographic
analysis in determining appropriate weights and describing
the constituents of a group.

The goal of commercial and public sector geodemo-
graphic packages is to place local areas in some national
context based on the characteristics of residents, that is,
their primary purpose is descriptive generalization. As
national classifications have proven useful for marketing
and are widely used as predictors of consumer behavior
(Webber, 1985), the authors do not wish to challenge the
utility of geodemographic systems. However, when one
looks at the history of efforts to map the socioeconomic
variation in cities certain themes emerge. Labeled catego-
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ries have been used for over a hundred years to describe
urban populations in a multivariate sense. While the tech-
niques have evolved and become more sophisticated, while
the volume and perhaps quality of the data has greatly
increased, the basic method of multivariate mapping has
not changed. For as long as such maps have been made,
labeled categories have been used. The principal limitation
of reliance on labeled (or numbered) categories is not the
labels per say but the problem of communicating the mul-
tidimensional complexity of the categories represented by
the labels.

The problem of assigning labels in the inductive, quan-
titative, analytical techniques that have been used since
Shevky is essentially a problem of designing an interface
to the classification system. In addition to labels, geodemo-
graphic systems often have a hierarchical structure which
allows the user to explore the classification with various
levels of detail. The UK 2001 output areas classification
was constructed by first creating seven categories, and the
subdividing each of those categories further to create a final
dataset with 7 high level categories, 21 mid level categories,
and 52 classes at the finest level of details (Vickers et al.,
2005). In the remainder of the paper we present a technique
for constructing topological relationships between geode-
mographic classes these topological relationships enable
the construction of a map of ‘‘attribute space.” The tech-
nique employed here allows one to avoid the use of labeled
categories, assess the multivariate similarity of classes, and
explore the relationship between geographic proximity and
social similarity. This latter characteristic gives the tech-
nique particular strength and it provides some new insights
into the assumptions underlying a number of urban spatial
analytical techniques.

3. Self-Organizing Maps

Maps preserve topological relationships among objects
in space. In the cartographic context, entities and features
that are close to each other in the real world are repre-
sented close to each other on a map. There is evidence to
suggest that the ability to situate oneself on a map is an
innate human ability (Holden, 2006). This makes maps use-
ful tools for describing the environment and presenting
data. Maps are frequently used to present information
about urban areas. Traditional cartographic maps are lim-
ited in that they can only paint a one-dimensional picture
of the social characteristics of an area. While maps are
an efficient and familiar medium, they have limitations
when it comes to displaying multiple pieces of information
about the same location.

The concept of a map can also be applied to non-geo-
graphic objects; or it can be used to visualize geographic
objects (census tracts) in a spatial but non-geographic con-
text. That is, census tracts can be organized in space based
upon the similarity of their characteristics rather than their
geographic proximity. This is the basic idea behind the
Kohonen algorithm that creates Self-Organizing Maps
(SOMs) that maps observations with similar attribute pat-
terns onto contiguous areas in output space. The resulting
visualizations are called self-organizing feature maps
(Kohonen, 1997). The idea is simple: observations (vectors)
that are similar are mapped to proximate regions of a two-
dimensional synthetic space of fixed topology. SOMs are a
type of unsupervised artificial neural network. Neural net-
works use the concept of a ‘‘neuron” to analyze data. Neu-
rons are organized in layers and connected. Neurons
respond to a stimulus (data) by transforming the data,
themselves, or other neurons. In the approach outlined by
Kohonen (1997) and used here, a single output layer of neu-
rons is trained such that regions of this layer are sensitized
to observations with specific types of attribute vectors.

SOM outputs are attribute maps. Unlike thematic maps,
SOM feature maps excel at the display of high dimensional
datasets. Feature maps are a projection of high dimen-
sional attribute space such that attribute vectors of a par-
ticular generalized form are associated with locations in
output space (Skupin and Agarwal, 2008; Skupin & Fab-
rikant, 2003). As a data reduction method, a SOM cuts
down the number of rows and columns of a data matrix;
the method is a combination of data projection and data
quantization (Yan & Thill, 2008). With a self-organizing
feature map, a map-reader can judge the similarity or dis-
similarity of objects based on their proximity. The
approach shares some characteristics with multidimen-
sional scaling, regression, and cluster analysis. The process
of fitting observations to a SOM is an iterative and stochas-
tic process dependent upon a random map initialization.
For details on specifying and training a SOM see Bacao,
Lobo, & Painho (2008), Kohonen (1997), Kohonen,
Hynninen, Kangas, and Laaksonen (1996), Openshaw
(1989), and others. This paper will only describe the details
relevant to the interpretation of SOMs.

Space in a SOM consists of a regular lattice of ‘‘neu-
rons” each of which stores a vector describing attribute
weights. The elements of the lattice generally are square
or hexagonal. Through the SOM mapping process, each
neuron in the output layer is sensitized to a particular con-
figuration of attributes and observations are ‘‘fit” to neu-
rons much as a regression model is fit to data. It is useful
to think of the neurons on the feature map as buckets for
data. Observations that are similar are placed either in
the same bucket or in buckets that are topologically close
to one another on the feature map. For example, places
with many wealthy householders, with high levels of educa-
tion, high homeownership rates, and low poverty rates
would end up in buckets that are near each other and clus-
tered in a region of the feature map. On the other hand,
census tracts where poverty is abundant and residents typ-
ically have low levels of education would end up clustered
in buckets in a different region of the SOM; probably quite
far away from the well educated and wealthy people. Places
that have both wealthy households and poor households
would end up occupying a region of the map somewhere
between the two extremes. Training a SOM is an iterative
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process of defining what types of observations are associ-
ated with buckets in different regions of the feature map.
By examining the contents of each bucket after the SOM
is completely trained, one can get a sense of how different
regions of the SOM represent different types of
observations.

SOM feature maps of different sizes have different char-
acteristics (Skupin & Agarwal, 2008). Small feature maps
provide generalizations; large grids allow a unique location
in geographic space to be mapped to a unique location in
the synthetic attribute space. In a large feature map, where
the number of buckets exceeds the number of observations,
each bucket may hold few, if any observations; regions
have very specific properties. On the contrary, in a small
SOM feature map where the number of observations far
exceeds the number of buckets, many observations will fall
into each bucket and regions of the map will represent gen-
eral characteristics (Fig. 1). The size of the SOM feature
map is specified by the user a priori.

Relatively few geographic applications of SOM have so
far been reported in the literature. The SOM has success-
fully been trained to classify digital satellite images (Vill-
mann, Merenyi, & Hammer, 2003; and many others). In
all these works, SOM is used as an unsupervised classifier,
working on the multi-spectral information in satellite
images. Openshaw and Wymer (1995) tested an application
of the SOM algorithm against a K-means classification on
census data in the United Kingdom and found it to per-
form very well. Skupin and Hagelman (2003) use the
SOM method to study patterns of change in the socioeco-
nomic profile of census tracts. Outside the application of
SOM to satellite imagery or census data, a handful of stud-
ies of geographic feature identification have been con-
ducted with the SOM method. An early case study by
Kaski and Kohonen (1996) applied SOM to a data set of
39 welfare statistical indicators of countries. Himanen,
Järvi-Nykänen, and Raitio (1998) explored the applicabil-
ity of SOM in identifying daily travel patterns in a disag-
gregate travel diary data set. Thill, Kretzschmar, Casas,
and Yao (2008) analyze ill-conditioned linguistic data on
the Atlantic Seaboard of North America in relation to
geography. Yan and Thill (2008) developed an interactive
visual data-mining environment to explore patterns in a
multidimensional database of air travel flows. Kauko
30 objects Small SOM (7 Cells)

Large SOM (24 Cells

Fig. 1. Self-Organi
(2005) studied spatial housing markets, and Hatzichristos
(2004) applied SOM to a regional classification of Athens,
Greece.

Skupin and Hagelman (2003, 2005) used large grids to
explore the demographic ‘‘trajectories” of different regions
of Texas. In this context, a large grid separates similar
regions into unique areas on the feature map. In this work,
a SOM is trained on 30 years of census data. The large fea-
ture map allowed them to examine how the characteristics
of census tracts changed over time by looking at how indi-
vidual tracts moved around the output space over time.
Medium sized grids are a compromise; they allow regions
with clearly identifiable characteristics to form on the
map, yet general statements can be made about these
regions as they contain a fair number of census tracts – this
is the approach used in the next section.

The Kohonen Self-Organizing Map algorithm extends
geodemographics, and similar cluster-like methods by con-
structing topological relationships between classes (Koho-
nen, 1997). Geodemographic classifications group areas
with similar characteristics and apply descriptive labels to
these classifications. One of the problems with such classi-
fications is that groups are discrete. It is not clear how sim-
ilar or dissimilar classes are in a multivariate sense because
classes are typically described by comparison to regional or
national averages. By constructing topological relation-
ships between classes, the Kohonen algorithm allows the
user to understand the degree of similarity or dissimilarity
between areas based upon their location in a two dimen-
sional projection of multidimensional attribute space.

To explore the efficacy of SOMs and geovisualization as
a geodemographic tool, a dataset with 79 variables is used
to describe census tracts in New York City. The variables
used in the analysis are listed in the Appendix. Variables
from the 2000 decennial census were chosen to represent
some aspect of New York’s social geography. Census tracts
are mapped onto a 45 � 30 cell map of ‘‘social space” con-
sisting of 1350 buckets (neurons) for 2217 census tracts.
Buckets can be interpreted as classes or clusters of similar
data. The topological relationships built by the Kohonen
algorithm allow the user to examine any number of buckets
or classes – selecting a single bucket would be akin to
exploring a single geodemographic class at the highest level
of disaggregation, selecting groups of contiguous cells
)

Each cell contains approximately 4 observtions
on average.  It is a more general categorization 
than the larger SOM below.

Each cell contains just over 1 observation 
on average.  Regions of the SOM are 
more specialized.

zing Map Size.
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would be parallel to exploring a geodemographic classifica-
tion at a higher level aggregation. With an integrated visual
data-mining approach, we avoid the use of category labels.
Since our approach is visual, we can define a very large
number of categories and still present our results in a
way that is easy to interpret. Pairing the synthetic map of
attribute space with a geographic map of census allows
the user to explore how groups of tracts in attribute space
map to geographic space, and vice versa. The comparison
of map pairs can be simplified and standardized through
the use of a statistic to compare map patterns.

A simple scaled measure of the average distance between
observational units was developed to compare maps of
social space to maps of geographic space. To compare
maps, we compute the average distance between all pairs
of census tracts and all pairs of SOM buckets (neurons)
that satisfy some pre-specified criteria (cases). For both
maps the distance between cases is compared to the average
distance between all observational units to obtain a relative
measure of dispersion. This relative dispersion index is for-
mulated as
P

iðcaseÞ

P

jðcaseÞ
dij=NðcasesÞ

P

iðallÞ

P

jðallÞ
dij=NðallÞ

where dij is the Euclidean distance between observations i

and j. Small numbers indicate that neurons or census tracts
satisfying a given criteria form compact regions, while large
numbers indicate that the units of interest are further apart
than average. The correspondence of dispersion statistics
between map pairs allows one to assess the relationship be-
tween geographic proximity and social similarity.
Unified Distance Matrix

Fig. 2. Unified Distance Matrix.
4. Mapping New York City

New York City is an ideal subject for testing for spatial
demographic methods. New York is home to what may be
the most racially and ethnically diverse zip code in the Uni-
ted States, 11373 in Elmhurst (a neighborhood in Queens
County) where the local high school has students from 96
different nations and 59 languages are spoken (Utley,
March 17, 2001). New York also has neighborhoods with
clearly identifiable ethnic identities. New York has well-
defined high-income areas. Some of the wealthiest parts
of the United States are in the city, yet the Bronx is the
poorest urban county in the nation. This combination of
diversity and residential segregation make simple low
dimensional classifications of New York’s neighborhoods
difficult. The complexity and richness of New York’s social
landscape make it ideally suited to exploration through
data-mining techniques and geovisualization tools.

The SOMPAK code library was used and a SOM was
trained using random selection of 50% of the census tracts
(Kohonen et al., 1996). Parameterization of each step has a
large effect on the resultant trained map. Training a SOM is
more akin to an art than to a science, hence the widely held
view that SOMs, like other data-mining techniques, are
‘‘black boxes” (Miller & Han, 2001). We chose suitable
SOM parameters through trial and error. The final map
was selected through an iterative process whereby we ini-
tialized 100 SOMs using random numbers and trained each
SOM by presenting 100,000 census tracts (the training
dataset was sampled with replacement). The map with
the lowest mean square error was retained for analysis.
This training period is computationally intensive and took
8 run-time hours on a desktop computer with an AMD
Athalon XP 3200 processor and 1GB of RAM. The
SOM output was imported into ESRI ArcGIS 9.1 software
using a Python script. Using the ESRI geodatabase file for-
mat, a relational (one to many) link was established
between the self-organizing feature map and a geographic
map of New York City by census tracts.

There are a number of different ways to summarize a
SOM. Traditionally, component planes and the unified dis-
tance matrix (or U-matrix) are utilized. The U-matrix is a
visualization of the SOM that illustrates the distance
between adjacent neurons in attribute space (the U-matrix
for the SOM described below is shown in Fig. 2). Observa-
tions that have similar profiles on input variables are
mapped to nearby areas, however, distance in the synthetic
space of the SOM is not constant. Some pairs of proximate
buckets may hold observations that are more similar than
other pairs of proximate buckets. The synthetic space of
the SOM has hills and troughs which can increase surface
distance between pairs of proximate neurons. The U-
matrix shows the distance, or dissimilarity, between the
vectors describing adjacent neurons, it illustrates cluster
structures evidenced by ‘‘troughs” and ‘‘hills” in the dis-
tance surface. The U-matrix provides little insight on the
meaning of the observed structures. In Fig. 2 the darker
the cell the more dissimilar it is to its neighbors. Each
bucket in the SOM has a unique value for each of the 79
attributes in the data set. A component plane uses color
to represent the weight assigned to a single input variable
at each neuron. Therefore, inspection of each of the 79
component planes would in principle allow a user to figure
out the exact characteristics of each neuron. This approach
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however holds little advantage over an atlas displaying the
same data.

An alternative approach is to work backwards, that is
by selecting a census tract or group of tracts with known
characteristics and examining where they fall on the
SOM feature map. One can then use knowledge of the city
under study to explore the geography of the SOM feature
map. By selecting an area of interest one can examine
how it maps onto the SOM feature map. Reversing the
process, selecting all tracts that fall into the same buckets
as the area of interest, lets one quickly visualize parts of
the city that are similar to the area of interest in a multivar-
iate sense. Fig. 3 illustrates the latter approach to SOM-
based urban social geography. The census tracts in Man-
hattan’s Community Board 8 (an administrative unit that
Community Board 8 Community Board 8 Feature Map

Tracts In The Same Class As Community Board 8

Fig. 3. Linking Attribute and Geographic Maps.

Table 1
Relative dispersions in geographic space and in attribute space

Criteria Relative census trac
dispersion

Manhattan Community Board 8 (Fig. 3) 0.09
Brooklyn Community Board 6 0.12
Top quartile for median household income 1.14
Bottom quartile for median household income 0.87
Top decile for median household income 1.05
Bottom decile for median household income 0.87
Top 1% for median household income 0.61
Bottom 1% for median household income 0.91
Upper Right Corner of the SOM (Fig. 4) 0.53
Lower left corner of the SOM (Fig. 5) 0.84
90% Minority (Fig. 6) 0.79
90% African–American 0.67
90% Caucasian 1.11
has a role in governance) are selected in this figure. The
32 tracts that make up Community Board 8 map to a rel-
atively well-defined region of the SOM feature map illus-
trating that Community Board 8 is a (relatively) socially
homogenous political unit. Community Board 8 is one of
the most affluent in the city encompassing areas to the east
of the southern half of Central Park in Manhattan. Most of
the 32 tracts are mapped to 26 neurons bundled together in
the upper right region of the SOM feature map. However,
two or three outliers are visible. Those outliers correspond
to census tracts in Community Board 8 that contain public
housing developments. The rightmost of the three outliers
is a tract that contains a development for low income
senior citizens. The two furthest outliers each contain large,
high-rise, low income housing projects (Isaacs Towers and
John Haynes Holmes Towers). Given their discordant
socioeconomic profiles, these tracts sensitize distant parts
of the SOM feature map, in spite of their close geographic
proximity to the rest of Community Board 8. The third
image in the sequence illustrates the return to the geo-
graphic map, where twelve additional census tracts that
are similar, i.e., occupying the same part of the SOM, to
those in Community Board 8 are identified. Most of these
new tracts are geographically close to Community Board 8.
The process shows that tracts with many similarities to
those in Community Board 8 are generally close to it –
affluent census tracts are birds of a feather. This visual
interpretation is supported by the relative dispersion statis-
tic for the social space map. The score of 0.39 indicates that
the classes representing the geographically contiguous com-
munity board 8 are also clustered in attribute space. In gen-
eral one finds that the very affluent parts of the city, for
example, those tracts in the top 1% for income, are less
diverse and more geographically concentrated than the
lower income parts of the city (Table 1).

The analysis of Community Board 8 suggests that upper
right corner of the SOM feature map represents the more
affluent portions of the city (Fig. 4). Selecting the neurons
in the extreme upper right yields a geographic map that
t Relative neuron
dispersion

Comparison of relative dispersions
(census tract dispersion/neuron
dispersion)

0.39 0.23
0.68 0.17
1.03 1.12
0.96 0.91
0.99 1.06
0.99 0.88
0.64 0.97
0.87 1.05
0.26 2.04
0.26 3.23
0.77 1.03
0.60 1.12
0.99 1.12
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includes some of the more affluent parts of the city (includ-
ing portions of the West Village, Chelsea, the Upper East
and West sides, Forest Hills, Park Slope, Brooklyn
Heights, and Riverdale). The portion of the SOM that is
most distant from the upper right in the attribute space,
the lower left, corresponds with tracts in northern Manhat-
tan, Harlem, and the Bronx (Fig. 5). The extreme lower left
contains census tracts where over 50% of the population
lives in poverty (as defined in the 2000 census). The tracts
of the lower left do not group into as clearly defined areas
as those in the upper right. This suggests that these parts of
the city that are most dissimilar to the affluent parts of the
city exhibit less clustering than affluent areas, or stated
Census tracts in the upper rig

Fig. 4. Census Tracts in the Upp
more crudely, poor people are less clustered than rich peo-
ple. In this example places with similar levels of attribute
clustering show different levels of geographic clustering.
This finding is again borne out by the dispersion statistics.
The areas represented by the upper right are more geo-
graphically clustered than the lower left, 0.53 for the upper
right versus 0.84 for the lower left (see Table 1). This obser-
vation should be tempered by the U-matrix (Fig. 2) which
shows some differences between the upper right and lower
left corners of the SOM.

Selecting large contiguous regions of the SOM as
shown in Figs. 4 and 5 allows the user to explore the
geodemographic classification created by the Kohonen algo-
ht corner of the SOM

er Right Corner of the SOM.



Census tracts in the lower left corner of the SOM

Fig. 5. Census Tracts in the Lower Left Corner of the SOM.
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rithm at different levels of detail, similar to a hierarchical
cluster analysis. Since proximity in the synthetic space of
the SOM equates to similarity, selecting groups of proximal
neurons (buckets) allows the user to slice the dataset at a
level of aggregation that suits their particular purpose. The
ability to create ad hoc hierarchical grouping makes the
SOM-based approach to geodemographic analysis particu-
larly flexible.

Another approach to exploring and interpreting the
trained SOM feature map is to select an area based on a
single criterion, say census tracts where more than 90%
of residents are not caucasian, Fig. 6 identifies census
tracts that meet this particular criterion. Using the SOM
feature map, we can find places that belong to the same
classes as places where more than 90% of residents are
not caucasian (tracts mapped to the same neurons) thus
highlighting areas that are similar. In the case of New
York City, Fig. 6 indicates that the latter areas are adja-
cent to zones satisfying the 90% non-caucasian criteria.
The geographic pattern of places with a large non-cauca-
sian population is very similar to the pattern of these cen-
sus tracts on the Self-Organizing Map, there is a close link
between the distribution of these tracts in geographic and
attribute space. Again the relative dispersion statistics in
Table 1 support this finding: the geographic and the
Self-Organizing Maps have almost identical dispersion



Census tracts where more than 90% of residents 
are not caucasian

Census tracts that map to the same regions of the 
feature map as those places where more than 90%
of residents are not caucasian

Fig. 6. Using Attribute Map to Select Similar Regions.
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scores (0.79 and 0.77, respectively). This approach paints a
richer picture of the city; instead of using a single criterion
to identify similar places, we can now find areas of the city
that are similar in many respects.
5. Conclusions

Representing the complexity of urban populations
through cartography has been an area of inquiry since
the 1890s. As data became more abundant and statistical
techniques more refined, social area analysis and then fac-
tor analysis emerged. Modern geodemographic techniques
have their roots in the analytic framework of the Chicago
School and the methods pioneered by Eshref Shevky. Fac-
tor analysis and geodemographic techniques are limited in
that when classifications use large high-dimensional data-
sets it is difficult to assess the multidimensional similar-
ity/difference between classes. Factorial ecology and
geodemographics have been critiqued for their use of labels
(Goss, 1995; Palm & Caruso, 1972). Self-Organizing Maps
belong to a new class of approaches to the problem of
describing urban populations. They are noteworthy in that
when combined with geographic information systems they
allow one to filter the complex demographic reality of New
York City and are capable of highlighting general social
patterns while retaining the fundamental social fingerprints
of the city.

One of the precepts of the human-ecologic approach
that underlies geodemographics and urban factorial ecol-



SQMILES Area in square miles
POP100 Total population
HU100 Total housing units
POPDENS Population density (POP100/

SQMILES)
MALE_TOT Total male population
FEM_TOT Total female population
USCHLAGE Population under school age, under 5

years
SCHLAGE School age population, 5–17 years
MELDR_65 Elderly male population, 65 years and

over
FELDR_65 Elderly female population, 65 years

and over
ELDR_65 Elderly population, 65 years and over
PCT_USCA Percent of population under school

age, under 5 years
PCT_SCHA Percent of school age population, 5–17

years
PCT_ELDR Percent elderly population, 65 years

and over
PCT_FEM Percent female population
ENGLISH English spoken at home, 5 years and

over
SPANISH Spanish spoken at home, 5 years and

over
CHINESE Chinese spoken at home, 5 years and

over
RUSSIAN Russian spoken at home, 5 years and

over
ITALIAN Italian spoken at home, 5 years and

over
PCT_FORLAN Percent foreign language spoken at

home, 5 years and over
PCT_NATIVE Percent native born
HU_OCC Occupied housing units
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ogy is that populations sort themselves geographically to
form socioeconomically differentiated areal units or neigh-
borhoods (Park & Burgess, 1925; Robson, 1969). This
framework is important to the interpretation of census
reporting districts. The SOM method is a powerful tool
to extract high-level structures of groupings of census
tracts in the multidimensional attribute space. The com-
parison of patterns or structures in geographic space
and attribute space is of interest as it sheds light onto
the basic hypothesis of the human-ecologic approach to
urban analysis.

Our analysis of New York City provides insight into
Tobler’s First Law of Geography which states that proxi-
mal things are more similar than distal things. This law
seems not to hold when the ‘‘things” of interest are the cen-
sus tracts of New York City. We find that things which are
often quite similar, that project to same region of the SOM
map, are often in very different sections of the city. Well-
defined, compact geographic regions are often composed
of neighborhoods that are widely distributed in attribute
space; as an example, Brooklyn’s Community Board 6 is
a geographically defined compact region comprised of cen-
sus tracts that map to many regions of the attribute space
(Table 1). The ‘‘First Law” has important implications for
spatial analytical techniques where buffers, kernels, or
weights matrices are used in estimation or to treat the envi-
ronment endogenously. It is important to understand that
in a multidimensional sense, the assumption of proximity
equating to similarity does not hold at the census tract
level, in New York City. Whether and to what extent this
may also be the case in other metropolitan areas remains
to be established through case studies across a representa-
tive sample of metropolitan areas.

Self-Organizing Maps share many of the limitations of
factor analysis and geodemographic clustering techniques.
When these techniques are applied to census divisions they
must be interpreted with caution. Any analysis of census
tracts in an urban area raises important questions about
the nature of tracts. Are tracts a meaningful unit of analy-
sis? An analysis of census tracts is not an analysis of people
and one must be careful to limit inference to scale of obser-
vation – any statements in this paper are about groups, not
individuals. How important is the variability of popula-
tions within a tract to the overall classification scheme that
results from a particular analytical approach?

The ability to visualize SOMs using commercial geo-
graphic information systems is limited. Interfaces between
the SOM data-mining method and GIS are not widely
available however with lots of pointing and clicking or
some simple scripting the connections can be made. Cus-
tomized tools for the visualization of Self-Organizing
Maps in a geovisualization context are quickly becoming
available (Guo, Chen, MacEachren, & Liao, 2006; Takat-
suka, 2001; Thill et al., 2008; Yan & Thill, forthcoming,
in press).

Finally, one of the most important aspects of using
Self-Organizing Maps in demographic analysis is variable
selection. The absence of suitable theory to guide vari-
able selection is a troubling reality; there is no current
analogue to the Shevky–Bell hypothesis. Absent theoret-
ical guidance the best a researcher can do is choose vari-
ables deemed important to the problem at hand. SOMs
are an exploratory technique and as such are not useful
for confirming theory. Nor are SOMs easily integrated
into traditional statistical modeling techniques. While
SOMs are subject to criticism because of their inability
to extend urban theory, when used in the exploratory
mode they provide insight into the residential population
of a city and can shed light on some of the assumptions
underlying many urban analytical techniques such as
the relationship between proximity and similarity. In
sum linking the Kohonen Algorithm with GIS helps in
understanding the ‘‘particular circumstances of the
community.”

Appendix. Socio-economic variables



HU_VAC Vacant housing units

HU_OWN Owner occupied housing units

HU_RENT Renter occupied housing units

PCT_VACT Percent vacant housing units

PCT_OWOC Percent owner occupied housing
units

MEDMOVED Median year householder moved into
housing unit

SAME1995 Population in same house in 1995
MEDRENT Median contract rent quartile in

dollars
PCTINCOME Median gross rent as percent of

household income in dollars
YRBUILT Median year structure built
MEDVALUEOO Median value for owner occupied

housing units
HH_TOT Total households reported
HH_POP Total population in households
HH_AV_SZ Average household size
HH_1PER One person households
HH_FAM Two or more person family households

HH_CH Households with one or more people
under 18 years

PCT_HHCH Percent households with children
PCT_ALONE Percent living alone
PCT_FAM Percent in families
PCT_FHHH Percent single female head of

households
PCT_SMOM Percent single mothers
TOT_FAM Total families
POP_FAM Total population in families
FAM_SIZE Average family size
PCT_MARR Percent of families married
PCT_MWC Percent of families married with

children
MED_HHI Median household income
PERCAPITA Per capita income in 1999
MEDINCOME Total median earnings in 1999
PCT_POVERT Percent below poverty level
PCT_UNEMP Percent of workforce unemployed
PCT_DRIVE Percent of workers driving to work
PCT_CAR Percent of occupied housing units with

vehicle available
PCT_PUB Percent enrolled in public school

(grades Pre-K to 12)
PCT_GRAD Percent high school graduates, 25 years

and over
WHITE Number who self identify as only white

(White alone)
BLACK Black or African American alone
NATAMER American Indian and Alaska Native

alone
ASIAN Asian alone
PACISLAND Native Hawaiian and Other Pacific

Islander alone

OTHER Some other race alone
MULTIRACE Two or more races
HISPANIC Hispanic or Latino
NONHISP Non-hispanic
ONE_NH One race, non-hispanic
WHITE_NH White alone, non-hispanic
BLACK_NH Black or African American alone, non-

hispanic
NATAM_NH American Indian and Alaska Native

alone, non-hispanic
ASIAN_NH Asian alone, non-hispanic
PACIS_NH Native Hawaiian and Other Pacific

Islander alone, non-hispanic
OTHER_NH Some other race alone, non-hispanic
MULTI_NH Two or more races, non-hispanic
PCT_HISP Percent Hispanic (HISPANIC/

POP100)
PCT_WHITE Percent White (WHITE/POP100)
PCT_MINOR Percent Minority (1-WHITE/POP100)
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