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Abstract

This study applied logistic regression to model urban growth in the Atlanta Metropolitan Area of
Georgia in a GIS environment and to discover the relationship between urban growth and the driv-
ing forces. Historical land use/cover data of Atlanta were extracted from the 1987 and 1997 Landsat
TM images. Multi-resolution calibration of a series of logistic regression models was conducted from
50 m to 300 m at intervals of 25 m. A fractal analysis pointed to 225 m as the optimal resolution of
modeling. The following two groups of factors were found to affect urban growth in different degrees
as indicated by odd ratios: (1) population density, distances to nearest urban clusters, activity centers
and roads, and high/low density urban uses (all with odds ratios < 1); and (2) distance to the CBD,
number of urban cells within a 7 · 7 cell window, bare land, crop/grass land, forest, and UTM north-
ing coordinate (all with odds ratios > 1). A map of urban growth probability was calculated and used
to predict future urban patterns. Relative operating characteristic (ROC) value of 0.85 indicates that
the probability map is valid. It was concluded that despite logistic regression’s lack of temporal
dynamics, it was spatially explicit and suitable for multi-scale analysis, and most importantly,
allowed much deeper understanding of the forces driving the growth and the formation of the urban
spatial pattern.
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1. Introduction

An urban land use system is dominated by human activities with complex spatio-tem-
poral dynamics. The main issues of great importance in land use modeling include spatial
dynamics, temporal dynamics, incorporation of human drivers of land use changes, and
scale dynamics (Veldkamp & Lambin, 2001). Dynamic simulation models and empirical
estimation models have been used to model land use changes. Rule-based simulation mod-
els, such as Cellular Automata (CA), are most suitable for incorporating spatial interac-
tion effects and handling temporal dynamics. However, CA models focus on simulation
of spatial pattern rather than on interpretation or understanding of spatio-temporal pro-
cesses of urban growth. Most dynamic simulation models cannot incorporate enough
socioeconomic variables.

Empirical estimation models use statistical techniques to model the relationships between
land use changes and the drivers based on historic data. As an empirical estimation method,
logistical regression has been used in deforestation analysis (Geoghegan et al., 2001; Schnei-
der & Pontius, 2001), agriculture (Serneels & Lambin, 2001; Walsh, Crawford, Welsh, &
Crews-Meyer, 2001), and urban growth modeling (Allen & Lu, 2003; Landis & Zhang,
1998; Wu & Yeh, 1997). Statistical approaches can readily identify the influence of indepen-
dent variables and also provide a degree of confidence regarding their contribution. In many
cases, these models fit spatial processes and land use change outcome reasonably well (Irwin
& Geoghegan, 2001). Urban growth modeling aims to understand the dynamic processes,
and therefore interpretability of models is becoming crucial. Interpretation of statistical
models is desirable for gaining knowledge of the processes driving the change of spatial pat-
terns. Calibration of logistic regression is not so computation intensive as CA simulation,
thus better suited to deal with scale dynamics by conducting scaling-up (from finer to coarser
resolutions) modeling for a region covering a large spatial extent. Existing logistical regres-
sion models of urban growth are based on a single scale and the resolution is determined by
the level of spatial detail in data or limited by the computation power. Spatial autocorrela-
tion, which causes violation of the assumption of independent residuals, is often ignored in
those models because the statistical methodology for considering autocorrelation is not well
developed for logistic regression models as it is for least squares regression models.

In this paper, an approach to urban growth modeling using logistic regression is explained.
The logistic regression model was applied to study the urban growth in Atlanta, Georgia. The
modeling aims to discover the relationship between urban growth and social, econometric and
biophysical factors and to predict the future urban pattern. A dynamic CA model has been
previously applied to simulate the urban growth of Atlanta (Yang & Lo, 2003). This will allow
comparison between these two approaches of modeling applied to the same city. The steps of
the modeling are to: (1) conduct multi-resolution calibration of a series of logistic regression
models and find the optimal resolution of modeling using a fractal analysis; (2) refine the
model at the optimal resolution by correcting for spatial autocorrelation; (3) use the refined
model to explain the driving forces of the urban growth; (4) validate the model by Relative
operating characteristic (ROC) statistics; and (5) predict the future urban pattern.

2. Study area

The Atlanta, Georgia metropolitan region is defined here to include thirteen urban
counties with a spatial extent of about 120 km · 140 km (Fig. 1). The first 10 counties form



Fig. 1. Thirteen-county Atlanta metropolitan region.
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the planning area of the Atlanta Regional Commission (ARC). In the last half of the 20th
century, Atlanta, Georgia has risen to become the premier commercial, industrial, and
transportation urban area of the southeastern United States and one of the fastest growing
metropolitan areas in the Nation. Concomitant with the high rate of population growth
has been an explosive growth of the urban extent. This has resulted in tremendous land
cover changes within the metropolitan region, wherein urbanization has consumed vast
acreages of forested and agricultural land adjacent to the city proper and has pushed
the rural/urban fringe farther and farther away from the original Atlanta urban core.

There has been an unbalanced and polarizing growth in Atlanta: a dividing line exists
between the north and the south, strongly corresponding with the long-standing residen-
tial racial segregation patterns. This unbalanced growth has many dimensions which are
shaping factors of the urban patterns: population, race, income, employment, housing,
and transportation patterns (BICUMP, 2000). Explosive population growth is occurring
in the northern and outer suburbs of the region. Race segregation is also observed. The
white tend to live in the north of the Interstate Highway 20, and in the far southern sub-
urban communities. Central Fulton and Dekalb counties are home to over 70% of the
region’s non-white population. Higher income families tend to live in the region’s north-
ern and far southern areas. The poor tend to live in the central city and southern parts.
Unbalanced growth of employment also has fueled the urban sprawl. Most new jobs



Fig. 2. Major activity Centers in Atlanta region in 1995 (Source: Atlanta Regional Commission).
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and high-paying jobs are on the north side of the region (Atlanta Regional Commission,
1997). Many of the areas of greatest job increases are outside Atlanta’s I-285 perimeter
highway. The central city of Atlanta is slipping overall in its share of jobs. There is little
or no job growth in the majority non-white neighborhoods. The spatial distribution of
affordable housing is one of the important factors shaping metropolitan growth patterns.
Many middle-class families cannot afford to live in the city of Atlanta’s residential areas or
in job-rich parts of the suburbs. Developments sprawl into the exurban fringe because
many families cannot afford the near northside houses and avoid the southside (BICUMP,
2000). Transportation plays an important role in shaping urban development. The bulk of
the Atlanta region’s infrastructure funds have been spent on highways, particularly in the
northern part of the region (Atlanta Regional Commission, 1997).

The massive suburbanization of economic activities since the 1960s contributed signif-
icantly to the spatial restructuring of the business landscape of the Metropolitan Atlanta,
resulting in the clustering of high-order activities in new metropolitan-level urban centers –
‘suburban downtowns’ (Hartshorn & Muller, 1989). The emergence of these large multi-
functional complexes in the outer suburban city has created a polycentric structure
(Fig. 2). The decentralization continues with astonishing rapidity today.
3. Statement of model

A logistic regression model was used to associate the urban growth with demographic,
econometric and biophysical driving forces and to generate an urban growth probability
map. In a raster GIS modeling environment, the data layers are tessellated to form a grid
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of cells. The nature of the land use/cover change of a cell is dichotomous: either the pres-
ence of urban growth or absence of urban growth. If binary values 1 and 0 are used to
represent urban growth and no urban growth respectively and if it is assumed that the
probability of a cell changing to urban use follows the logistic curve as described by the
logistic function (Kleinbaum, 1994):

f ðzÞ ¼ 1

1þ e�z
ð1Þ

then the probability of a cell being urbanized can be estimated with the following logistic
regression model:

P ðY ¼ 1jX 1;X 2; . . . ;X kÞ ¼
1

1þ e� aþ
Pk

i¼1
biX i

� � ð2Þ

where P(Y = 1|X1, X2, . . ., Xk) is the probability of the dependent variable Y being 1 given
(X1, X2, . . ., Xk), i.e. the probability of a cell being urbanized; Xi is an independent variable
representing a driving force of urbanization, which can be of interval, ordinal or categor-
ical nature; and bi is the coefficient for variable Xi.

In this research, the land use/cover maps produced from Project ATLANTA for the
years 1987 and 1997 are used (Yang & Lo, 2002), which show six categories of land
use/cover: high-density urban, low-density urban, bare land, crop or grassland, forest,
and water. Logistic regression modeling, as an empirical estimation approach, allows a
data-driven rather than a knowledge-based approach to the choice of predictor variables.
Nevertheless, we still made an informed selection of variables. Selection of social predictor
variables was guided by a historical review of urban growth in Atlanta as reviewed in Sec-
tion 2. The social variables correspond to the five dimensions shaping Atlanta urban pat-
terns (population, race, income, employment, housing). Population density is often
established as land use determinants to indicate labor availability, accessibility, or pres-
ence of local markets (Agarwal, Green, Grove, Evans, & Schweik, 2001; Allen & Lu,
2003). Correlations may exist between those demographic variables. Logistic regression
calibration should check for multi-collinearity. Model calibration in this study had two
stages including initial calibration and refining. Multicollinearity test was not examined
in the initial stage in view of the large sample size and the possibility that part of the vari-
ables might be insignificant and excluded from the model in the refining stage. The choice
of econometric and biophysical variables conforms to most dynamic simulation modeling
practices, which usually consider the determining factors of ‘SLEUTH’ (slope, land use,
exclusion, urban extent, transportation, hillshade) as in Clarke’s SLEUTH model (Clarke,
Hoppen, & Gaydos, 1997; Dietzel & Clarke, 2006; Yang & Lo, 2003). These variables
reflect the biophysical conditions, the spatial influences of major highways, economic
activity centers, existing land use status, and institutional factors, such as land conserva-
tion. The 1990 census data were used for the social variables in model calibration. The
2000 census data were used for model prediction. The model should perform best if pre-
dictor data are collected at the year 1992, which lies halfway through the time period con-
sidered (1987–1997). There is a time lag of only two years between the calibration data
collection year and the halfway year, the influence of which on model results should be
minor. A 1995 map of major economic centers was used to calculate the distance to the
centers for model calibration and a 2001 map for prediction (Atlanta Regional Commis-
sion, 1995 & 1997). A 2001 National Land Cover Data (NLCD) map was used for
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validation. An interaction term number of urban cells within a neighborhood was calcu-
lated as an independent variable to take spatial interaction effects into account.

The complete list of variables is shown in Table 1. Fig. 3 shows the map of urban growth
from 1987 to 1997, which serves as the dependent variable Y. Although land use maps for
both high-density and low-density urban were available for this study, the variable Y was
defined based on the combination of the two urban types. This makes this study compara-
ble with previous CA modeling. Most existing urban growth models do not differentiate
between high-density and low-density urban growth. Fig. 4 shows the raster maps of the
independent variables. Five design variables denoted as X14 through X18 representing five
land use/cover classes respectively were generated to distinguish among the six categories of
land use/cover by recoding the 1987 land use/cover map into a binary map for each land
use/cover category. If all the five design variables take the value of zero, then a cell value
in the ‘‘water’’ layer must be one; if any one of the five land use/cover classes takes the value
of 1, a cell value in the ‘‘water’’ layer must be zero. Including a ‘‘water’’ variable in the
model would be redundant and cause multi-collinearity. Initial model calibration used only
the first 18 variables. The last two variables were incorporated into the model in the model
refining stage to correct for spatial autocorrelation that might exist.
4. Multi-scale modeling and fractal analysis

Techniques of GIS have provided the potential to generate multi-resolution data sets
for scale up modeling. The simple and uniform geometry of raster data is convenient
Table 1
List of variables included in the logistic regression model

Variable Meaning Nature of variable

Dependent
Y 0 – no urban growth; 1 – urban growth Dichotomous
Independent
X1 Population density (1000 person/km2) Continuous
X2 Per capital income ($) Continuous
X3 Poverty rate Continuous
X4 Median housing rent ($) Continuous
X5 Percentage of white people Continuous
X6 Employment rate Continuous
X7 Slope (%) Continuous
X8 Distance to the nearest urban cluster (km) Continuous
X9 Distance to CBD (km) Continuous
X10 Distance to active economy centers (km) Continuous
X11 Distance to the nearest major road (km) Continuous
X12 Number of urban cells within a 7 · 7 cell window Continuous
X13 1 – Conservation area; 0 – not conservation area Design
X14 1 – High-density urban; 0 – not high-density urban Design
X15 1 – Low-density urban; 0 – not low-density urban Design
X16 1 – Bare land; 0 – not bare land Design
X17 1 – Cropland/grassland; 0 – not cropland/grassland Design
X18 1 – Forest; 0 – not forest Design
Ea Easting coordinate (m) Continuous
Na Northing coordinate (m) Continuous

a E and N are used to correct for spatial autocorrelation.



Fig. 3. Dependent variable Y – urban growth from 1987 to 1997.
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for aggregation. A series of logistic regression models with the 18 independent variables
(X1–X18) was calibrated in the support of Idrisi Kilimanjaro GIS software using full data
points within the mask of the thirteen counties.

Model calibration was initially tried at a resolution of 25 m, but Idrisi Kilimanjaro run-
ning on a DELL desktop computer failed to accomplish the model calibration due to the
intensive computation – noting that there are 16,699,756 data points for each layer and 19
layers in total. The raster layers at the resolution of 25 m were then aggregated to generate
50 m, 75 m, and so on up to 300 m data sets to accommodate the modeling at coarser
resolutions.

Many existing scale studies rely heavily on aggregation methods to generate multi-scale
raster data for analysis. GIS raster data aggregation generalizes an image by reducing the
number of rows and columns while simultaneously decreasing the cell resolution. Methods
for aggregating regular grids include the averaging method, sampling every nth cell, and
dominant values (Bian, 1997). The averaging method applies to continuous ratio and
interval data. Methods of sampling every nth cell and dominant values apply to nominal
data. In this study, for the dependent variable urban growth (Y), the conservation area
(X13), and design variables for land use/cover types (X14–X18), the method of selecting
dominant values was used to generate data with coarser resolutions. The DEMs of coarser
resolutions were generated using the averaging method. Multi-resolution slope (X7) data
were created from DEM data of corresponding resolutions. Raster layers for the number



Fig. 4. Raster layers of independent variables. For ratio data layers, the whiter the tone, the larger quantity; for
nominal data layers, black represents 1 and white represents 0.
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of urban cells within a 7 · 7 cell neighborhood (X12) were calculated from urban distribu-
tion maps. The selection of the size of the neighborhood window conforms to most prac-
tices in dynamic simulation models where sizes are often 3 · 3, 5 · 5, or 7 · 7. Existing
scale studies show that variations of results from multi-scale analysis are not completely
due to the ‘real’ scale effects, but rather they are artifacts attributable to the use of different
resampling methods (Weigel, 1996). To minimize and account for the effects of data aggre-
gation on modeling, an explicit aggregation operation was not applied to raster layers of
demographic data (X1–X6), and distance variables (X8–X11), rather multi-resolution data
for those variables were directly generated at each resolution.

The purpose of multi-resolution calibration of the logistic regression in this study was
to find the optimal resolution for modeling. Moellering and Tobler (1972) argue that geo-
graphic processes operate at different scales and that one can determine the resolution level
at which most processes operate. There are means to forecast at what resolutions new pat-
terns may emerge and when the performance of models takes a significant turn. These
turning points should be those at which the resolutions approach dominant operational
scales. These resolutions are where modeling should be conducted (Meentemeyer, 1989;
Moellering & Tobler, 1972). Previous studies in environmental modeling using simple lin-
ear regression found that R-square values are higher at coarser scales (Bian & Walsh,
1993; Kok & Veldcamp, 2001). Goodness-of-fit values might not be used to determine
the optimal resolution due to a lack of a turning point. And furthermore, logistic regres-
sion does not have an equivalent to the R-square that is found in ordinary least square
(OLS) regression. Although some come up with pseudo R-square statistics, this statistic
does not mean what R-square means in OLS regression (the proportion of variance
explained by the predictors). Therefore, pseudo R-square values are not suitable for deter-
mining the best resolution of modeling.

This study used fractal analysis to determine the optimal scale of modeling. Fractal
dimensions were calculated for the probability surface maps predicted using the logistic
regression model calibrated from resolutions of 50 m to 300 m. The triangular prism sur-
face area method (Clarke, 1986; Jaggie, Quattrochi, & Lam, 1993) was used to calculate
the fractal dimensions. This method estimates lumped fractal dimension values from the
predicted probability surface. The fractal dimensions were calculated using the software
package Image Characterization and Modeling System (ICAMS) (Quattrochi, Lam,
Qiu, & Zhao, 1997).

Fig. 5 shows the change of fractional dimension with the resolution of modeling.
Fractal dimension increases almost linearly with the change of resolution from 50 m to
225 m, then decreases at the turning point of 225 m. This suggests that the urbanization
probability surface does not demonstrate the property of self-similarity of real fractals
since self-similar objects must have constant fractional dimension. Previous studies have
demonstrated that true fractals with self-similarity at all scales are uncommon (Lam &
Quattrochi, 1992) and most real-world curves and surfaces are not pure fractals with a
constant fractal dimension at all scales. The change of fractal dimension across scale,
though controversial to the strict sense of fractal dimension as defined by Mandelbrot
(1983), can be interpreted positively and used to summarize the scale changes of the spatial
phenomena. The scale at which the highest fractal dimension is measured may be the scale
at which most of the processes operate (Cao & Lam, 1996; Goodchild & Mark, 1987; Lam
& Quattrochi, 1992) and the model performs best. To test if the model in deed performs
best at the turning point of 225 m, a series of urban growth probability maps generated
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from the logistic regression was compared against an actual urban growth map and ROC
values, which validate the model performance, were calculated (for details of model vali-
dation, see Section 8). Fig. 6 shows the change of ROC statistics with resolution. The high-
est ROC value was achieved at the resolution of 225 m. Thus the resolution of 225 m was
selected as the optimal scale at which the logistic model best represents the dynamics of
urbanization and the underlying processes. The optimal resolution of 225 m should be a
compromised resolution and avoids both individualistic fallacy and ecological fallacy.
5. Refining the model at the resolution of 225 m

The initial calibration of logistic regression models at various resolutions above used
the full data set comprising all cell values within the 13 county study area. At each reso-
lution, the model calibration resulted in a predicted urbanization probability surface map
and a residual map indicating the difference between the predicted and the observed prob-
ability. The logistic regression model assumes that observations are independent of each
other and the residuals are mutually independent. But this assumption may be violated
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due to the spatial autocorrelation. Spatial autocorrelation is the propensity for data values
to be similar to neighboring data values.

To test the logistic regression residual for spatial autocorrelation, Moran’s I for the
King’s case was calculated under a normality assumption that the cell values represent
independent drawings from a single normally distributed population, hence a null hypoth-
esis that there is no spatial autocorrelation. For the 13-county area within the residual
image at the resolution of 225 m, the value of Moran’s I is 0.283, indicating positive spatial
autocorrelation. The Z-test statistic value is 252.29 with the p value of 2.22e�6. The p

value is much less than 5%, which leads to the conclusion that the null hypothesis of no
spatial autocorrelation in the residuals can be rejected. In other words, spatial autocorre-
lation is present among the residual values.

Model fitting at the optimal resolution of 225 m was refined by correcting for spatial
autocorrelation. Logistic regression models belong to the family of generalized linear mod-
els. Spatial forms of such models are not well developed. This study used three steps to
correct for the effects of space.

The first step was applying raster GIS data aggregation and pixel thinning functions on
the data layers. This was done when multi-resolution data sets were created for multi-scale
modeling. The multi-resolution modeling process from 50 m cell size to 300 m cell size is a
process of alleviating the spatial effect by considering a series of spatial lags from the first
order of 50 m to the 11th order of 300 m. The effect of spatial dependence at the resolution
of 225 m must be weaker than that at 50 m since the attribute similarity becomes weaker as
spatial lags progress from the first order to a higher order.

The second step was including spatial coordinates of data points into the list of inde-
pendent variables. Spatial autocorrelation can be alleviated to some extent by attempting
to introduce location into the link function to remove any such effects present (Bailey &
Gatrell, 1995). For example, spatial coordinates of observations might be introduced as
additional covariates, or to classify regions in terms of their broad location and treat this
classification as an extra categorical explanatory factor in the model. This assumes of
course that one can ‘‘explain away’’ spatial dependence in terms of a first-order spatial
trend, i.e., the first-lag autocorrelation.

The last strategy was sampling. A stratified random sample image was generated and
used as the feature definition file to extract cell values of dependent and independent vari-
ables on which the refined logistic regression model was fitted. The spatial distances
between sampling data points are larger than those between neighboring data points in
the full data set, thus the spatial autocorrelation effects on modeling would be smaller than
those by using the full data set. Since the urban growth map serves as the dependent var-
iable in the logistic regression model, the small amount of area of urban growth also tends
to be under-sampled if only a portion of the data points are sampled for modeling. Atten-
tion must be paid to selection of an appropriate sampling method. Stratified random sam-
pling was applied to the area covered by the rectangle bounding the 13-county study area
to generate a vector point file in a GIS environment. Stratified random sampling is thought
to perform well when it is necessary to make sure that small, but important, areas are rep-
resented in the sample (Congalton, 1988). Since logistic regression model fitting would be
performed within the 13 counties, only those points within the counties were extracted
using point-in-polygon GIS operation. At the resolution of 225 m, the number of cells
within the counties is 206,316, of which 20,389 cells have been sampled. Within the coun-
ties, the number of cells that have changed from non-urban to urban, i.e., the number of 1s
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for variable Y (1 = urban growth), is 20,631, accounting for 1.85% of the total number of
cells. Of the 20,389 sample points, there are 370 points whose cell values are 1 in the Y

variable layer. The percentage of 1s in the sample is 1.82%, matching very well with the
percentage of 1.85% for the full data set, which demonstrates the representativeness of
the stratified random sampling.

A maximum likelihood estimator (Hosmer & Lemeshow, 1989) was used to fit the
model. The results of fitting the logistic regression model with the full 20 independent vari-
ables (M20) are given in Table 2. At the a = 0.05 level, population density (X1), distance to
the nearest urban cluster (X8), distance to CBD (X9), distance to active economy centers
(X10), distance to major roads (X11), number of urban cells within a neighborhood defined
by a window of 7 · 7 cells (X12), design variables high-density urban area (X14) and low-
density urban area (X15) are significant. At the a = 0.10 level, besides the above variables,
the variable UTM coordinate N is also significant. A probability map was derived using
the refined model and a residual map calculated to evaluate the extent to which autocor-
relation has been reduced. The value of Moran’s I becomes 0.006 (p = 0.074), indicating
very weak spatial autocorrelation. McFadden’s pseudo R-square (McFadden, 1973) was
used to test the goodness-of-fit of the model. Pseudo R square values between 0.2 and
0.4 are considered a good fit (Clark & Hosking, 1986; Domencich & McFadden, 1975).
The pseudo R2 value of the full model M20 is 0.147, indicating a weak fit.

Following the significance test, it is logical to construct a reduced model which excludes
those variables thought to be insignificant. Of the five design variables for land use/cover,
only two (X14 and X15) are significant. The other three (X16, X17 and X18) are insignificant.
Thus confusion arises since we are not sure about the contribution of land use/cover as a
single variable to the model when only a part of the design variables are significant. Stat-
isticians suggest that we must be careful in our use of the Wald statistics to assess the sig-
nificance of the coefficients and that whenever a categorically scaled independent variable
is included (or excluded) from a model, all of its design variables should be included (or
excluded) (Hosmer & Lemeshow, 1989). Strict adherence to the a = 0.10 level of signifi-
cance would justify excluding the three land use/cover types from the model. However,
the probability of urbanization of a land lot should be influenced by its initial land use/
cover status and initial land use/cover should be considered important in land use/cover
change dynamics in a biophysical and cultural sense. Thus all the five design variables
for land use/cover were kept in the reduced model. The results of fitting the reduced logis-
tic regression model (M12) is shown in Table 3. The pseudo R2 value of 0.278 indicates a
good fit of the model.
6. Model interpretation

Urban development tends to occur in an area of lower population density (X1). The
estimated odds ratio is 0.570068, or 1/1.754177, which is less than one, indicating that
the probability of urban growth in an area of higher population density is less than the
probability of urban growth in an area of lower population density. Specifically, the odds
of urban development would decrease by 0.754177 if population density increases by
1000 person/km2. Like most other American cities, urban sprawl and suburbanization
in the Atlanta metropolitan region are characteristic of low-density urban development,
which replaces farmland, forest and open space with single-family homes on large lots.



Table 2
Estimated coefficients and odds ratios for the logistic regression model containing the 20 independent variables
(M20)

Variable Coefficient Standard error Odds ratio Z P > |Z|

X1 �0.611000 0.215141 0.542808 �2.84 *0.005

X2 �0.000013 8.87E�06 0.999987 �1.49 0.135
X3 0.003925 0.008132 1.003933 0.48 0.629
X4 0.000189 0.000263 1.000188 0.72 0.473
X5 �0.000340 0.002980 0.999656 �0.12 0.908
X6 0.010102 0.015917 1.010153 0.63 0.526
X7 �0.017820 0.031064 0.982337 �0.57 0.566
X8 �0.960000 0.129032 0.382893 �7.44 *0.000

X9 0.017700 0.008939 1.017858 1.98 *0.047

X10 �0.083000 0.011277 0.920351 �7.36 *0.000

X11 �0.730000 0.119672 0.481909 �6.10 *0.000

X12 0.017299 0.007073 1.017450 2.45 *0.014

X13 �0.183890 0.522982 0.832031 �0.35 0.725
X14 �2.529920 0.812327 0.079665 �3.11 *0.002

X15 �1.513310 0.747177 0.220180 �2.03 *0.043

X16 0.922617 0.768840 2.515866 1.20 0.230
X17 0.731231 0.733594 2.077636 1.00 0.319
X18 0.374261 0.722887 1.453916 0.52 0.605
E 2.58E�07 2.65E�06 1.000000 0.10 0.922
N 4.99E�06 2.72E�06 1.000005 1.84 *0.095

Constant 13.52805 10.68137 N/A 1.27 0.205

*These variables are significant at a = 0.10 level.
Y Urban growth

*X1 Population density (1000 person/km2)
X2 Per capital income ($)
X3 Poverty rate (%)
X4 Median housing rent ($)
X5 Percentage of white people (%)
X6 Employment rate (%)
X7 Slope (%)
*X8 Distance to the nearest urban cluster (km)
*X9 Distance to CBD (km)
*X10 Distance to active economy centers (km)
*X11 Distance to the nearest major road (km)
*X12 Number of urban cells within a 7 · 7 cell window

X13 Conservation area
*X14 High-density urban
*X15 Low-density urban

X16 Bare land
X17 Cropland/grassland
X18 Forest
E Easing coordinate (m)
*N Northing coordinate (m).
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This may not be the case in developing countries where in the process of rapid urbaniza-
tion new commercial and industrial facilities and residential subdivisions housing middle-
class people often replace slums and villages populated with a large number of the poor
and lower-class workers living in peripheral areas, old towns, or city centers.



Table 3
Estimated coefficients and odds ratios for the logistic regression model containing the 12 independent variables
(M12)

Variable Coefficient Standard error Odds ratio Z P > |Z|

X1 �0.562004 0.211278 0.570068 �2.66 0.008
X8 �0.963000 0.128916 0.381746 �7.47 0.000
X9 0.020996 0.006731 1.021222 3.12 0.002
X10 �0.084002 0.010461 0.919431 �8.03 0.000
X11 �0.732010 0.118831 0.480946 �6.16 0.000
X12 0.018747 0.006998 1.018924 2.68 0.007
X14 �2.044372 0.809861 0.086837 �3.02 0.003
X15 �1.468988 0.745736 0.230158 �1.97 0.049
X16 0.959266 0.767965 2.609780 1.25 0.212
X17 0.790909 0.732248 2.205400 1.08 0.280
X18 0.421508 0.721633 1.524258 0.58 0.559
N 0.000057 0.000030 1.000057 1.90 0.027
Constant 18.804220 9.677099 N/A 1.94 0.052

Y Urban growth
X1 Population density (1000 person/km2)
X8 Distance to the nearest urban cluster (km)
X9 Distance to CBD (km)
X10 Distance to active economy centers (km)
X11 Distance to the nearest major road (km)
X12 Number of urban cells within a 7 · 7 cell window
X14 High-density urban
X15 Low-density urban
X16 Bare land
X17 Cropland/grassland
X18 Forest
N Northing coordinate (m).
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Urban areas tend to grow close to the nearest urban cluster. Distance to the nearest
urban cluster (X8) has a coefficient of �0.963. The odds ratio is equal to 0.381746, or
1/2.619543. The probability of urban development in an area is estimated as 2.619543
times as large as the probability of urban development in an area 1 km further away from
the nearest urban area. This demonstrates that pulling force has taken effect in the scale
economy where commercial facilities tend to cluster together in a localized area.

The decentralized, polycentric suburbanizing trend in the metropolitan Atlanta area is
evidenced by the interpretation of the odds ratios for the two predictors: distance to the
CBD (X9) and distance to active economy centers (X10). The odds of urban development
in an area 1 km further away from the CBD is estimated as 1.021222 as large as that in
area closer to the CBD. The odds ratio for distance to active economic centers is
0.919431, or 1/1.087629, which means that the odds of urban development in area close
to active economy centers is estimated as 1.087629 times as large as that in area 1 km fur-
ther away from active economic centers. The closer it is to major activity centers, rather
than to the CBD, the more probable a land lot will be developed for urban use.

The model also demonstrates that urban development has been controlled by road acces-
sibility. The odds ratio for distance to major roads (X11) is 0.480946, or 1/2.079235. The
odds of urban development in an area closer to major roads is estimated as 2.079235 times
as large as the odds of urban development in an area 1 km further away from major roads.
The road influence contributes to the spatial patterns of ribbon and strip development.
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A land lot with more neighboring areas that are urban is more likely to be developed for
urban use. The variable number of urban cells within a neighborhood of 7 · 7 cell size
(X12) has an odds ratio equal to 1.018924. With an increase of 1 urban cell within the
neighborhood, the odds of development will increase 0.018924. The use of a land lot is
often influenced by the land use/cover status of the adjacent area. Land managers and real
estate developers have some propensity of imitating the land use/cover behaviors in the
neighborhood.

Of the five land use/cover types, only high-density urban (X14) and low-density urban
(X15) areas have negative coefficients, resulting in odds ratio of less than 1. The odds of urban
development in the existing urban area is estimated only as 0.08684 times for high-density
urban use and 0.23016 times for low-density urban use respectively as large as the odds of
urban development in non-developed area. Certainly the cost of redeveloping commercial
and industrial areas is much higher than that in redeveloping residential areas. New urban
development has occurred mainly in undeveloped peripheral urban–rural fringe areas or
open space within established urban areas (infill development). It should be noted that the
dependent variable Y has binary nominal values with 1 representing the change from non-
urban to urban (urban growth) and 0 no such change. If X14 and X15 have values of 1, log-
ically speaking, there will be no urban growth (Y = 0), thus the odds of urban development
on existing urban area should be zero. However, in a logistical regression, the odds of Y being

1 is calculated using the equation ŵ ¼ eâþ
Pk

i¼1
b̂iX i , and the odds ratio for the dichotomous

variable Xi is calculated based on the equation w1

w0
¼ ebi . The parameter a can be interpreted

as the logarithm of the background odds that would result for the logistic model without any
X’s at all. The odds and odds ratio are never equal to zero.

The probability of urban development in bare land (X16) is larger than the probability
of urban development in areas covered with cropland or grassland (X17). The probability
of transition from cropland or grassland to urban use is larger than that of deforestation
(X18) for urban use. This can be seen from the odds ratio values of 2.61, 2.21 and 1.52 in a
decreasing order for bare land, cropland or grassland, and forest, respectively. All values
are greater than one, indicating a higher probability of urban development in those areas.
It should be noted that in the study area much bare land is forest clear-cut area. So it can
be said that urban development has taken place mainly at the expense of the depletion of
green space.

It is interesting to notice that the UTM coordinate northing (N) is a significant predic-
tor and has an odds ratio value slightly greater than 1 whereas the UTM coordinate east-
ing (E) is not significant and has an odds ratio value of 1. The variables N and E were
originally intended to correct for spatial autocorrelation. The interpretation of the odds
ratio for N has shown that it not only acts as a spatial autocorrelation corrector, but also
indicates an unbalanced growth along the north–south direction, since its odds ratio is a
little higher than 1, which means urban growth tends to occur in the northern part of the
region (with higher N coordinate values). The result conforms to the conclusion in the
study report by BICUMP (2000) as reviewed in Section 2.
7. Prediction of urbanization probability

The probability of urbanization was predicted by plugging the coefficients of the logistic
regression model containing the 12 significant predictors (M12) into Eq. (2). To take



Fig. 7. Urbanization probability maps of Atlanta, Georgia. Lighter tones indicate higher probabilities of urban
growth.
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temporal dynamics into as much consideration as possible, raster layers were updated with
newer cell values. The population density (X1) surface was regenerated using the 2000 cen-
sus data. Distance to active economy centers (X10) was derived based on the active econ-
omy centers in 2001 (Atlanta Regional Commission, 2001). Distance to the nearest urban
cluster (X8) and number of urban cells within a 7 · 7 cell window (X12) were calculated
based on the 2001 NLCD data. Design variables high-density urban (X14), low-density
urban (X15), bare land (X16), cropland/grassland (X17), and forest (X18) were also extracted
from the 2001 NLCD land use map. The map of predicted probability of urbanization is
shown in Fig. 7, which is a 10-class quantile classification of the predicted probability val-
ues. The lighter tones indicate higher probabilities of urban growth. The future urban dis-
tribution pattern is easily discernable from this map. Some new emerging clusters far from
existing urban areas can be seen. Most probable areas for urban development are closer to
major highways and existing urban clusters.
8. Model validation using ROC method

Relative operating characteristic (ROC) was used to validate the logistic regression
model. Recently the ROC method was brought to the field of land use/cover change model-
ing to measure the relationship between simulated change and real change (Pontius, 2000;
Schneider & Pontius, 2001). ROC method is an excellent method to evaluate the validity
of a model that predicts the occurrence of an event by comparing a probability image depict-
ing the probability of that event occurring and a binary image showing where that class actu-
ally exists. In this study, the ROC method offers a statistical analysis that answers one
important question: ‘‘How well is urban growth concentrated at the locations of relatively
high suitability for urban growth?’’ Basically, ROC assesses how well the pair of maps agrees
in terms of the location of cells being urbanized. Model validation using ROC reported a
summary ROC value, a ROC curve as well as the coordinates of the points on the curve that
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were used to calculate the ROC value. A ROC value of 1 indicates that there is a perfect spa-
tial agreement between the actual urban growth map and the predicted probability map. A
ROC value of 0.5 is the agreement that would be expected due to chance, i.e., the cells values
on the predicted probability image were assigned to random locations.

To conduct model validation, the image map of urban growth probability predicted
from the logistic regression model was compared against that of actual urban growth (ref-
erence image) obtained by comparison of the 1987 land cover map with the NLCD 2001
land cover map. First the ranked image of probability of urbanization was sliced at a series
of threshold levels. A threshold refers to the percentage of cells in the probability image to
be reclassed as 1 in preparation for comparison with the reference image. The series of
thresholds was specified at an equal interval of 5%. The threshold values are cumulative,
therefore setting the equal interval thresholds 5, 10, 15, . . . , 95 would yield 20 threshold
intervals 0–5%, 0–10%, 0–15%, . . . and 95–100%. ROC began with the cell ranked the
highest for probability, reclassified it as 1 and continued down through the ranked cells
until 5% of the cells had been reclassified as 1. The remaining 95% was classified as 0. This
slice image was then compared with the reference image. Then ROC continued for the suc-
cessive threshold. For each slice generated from each threshold, a two-by-two contingency
table was created based on the comparison of the slice image with the reference image
(Table 4). In the table, A represents the number of true positive cells which are predicted
as urban growth and are actually urban growth in the reference image. B is the number of
false positive cells. C is the number of false negative cells. D is the number of true negative
cells. From each contingency table for each threshold, one data point (x, y) was generated
where x is the rate of false positives (false positive %) and y is the rate of true positives
(true positive %):
Table 4
Contingency table showing the comparison of the slice image of predicted urban growth probability with the
reference image

Reference image

Urban growth (1) No urban growth (0)

Slice image of predicted probability Urban growth (1) A (true positive) B (false positive)
No urban growth (0) C (false negative) D (true negative)
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true positive % ¼ A

Aþ C
ð3Þ

false positive % ¼ B

BþD
ð4Þ

These data points were connected to create a ROC curve from which the ROC value was
calculated. The ROC statistic is the area under the curve that connects the plotted points.
The ROC curve is shown in Fig. 8. The ROC value is 0.85.
Fig. 9. Historical urban patterns and predicted urban patterns given percentage of urban area.
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9. Prediction of spatial patterns of urban distribution

The probability map can be used for producing maps of urban distribution if any quan-
titative data on the future total areas of urban distribution, for example, urban planning
data, are given. Based on the probability map, we can answer the question: ‘‘Where would
urban growth occur if we know the amount of growth?’’ In the study area, urban area
accounted for 15.2% in 1987 and 16.4% in 1997. What would the urban distribution pat-
terns look like if urban area increases to 20%, 25%, 30%, 35% and 40%? To produce the
spatial pattern of urban distribution given a certain amount of urban area, the increase of
the number of urban cells compared to the 1987 base urban map was calculated. Then the
number of urbanized cells was allocated to the probability map in the order of high prob-
ability value to low probability value. This generated a growth map. Next the growth map
was combined with the 1987 base map to produce the urban distribution map. Fig. 9
shows a series of maps with increasing proportions of urban area. The series of maps
clearly demonstrates the future trend of urban growth. It can be seen that urban growth
will occur around existing or newly formed urban clusters or along the major roads.

10. Discussion and conclusion

Logistic regression modeling was used to identify and improve our understanding of the
demographic, econometric and biophysical forces that have driven the urban growth and
to find the most probable sites of urban growth in Atlanta. The following two groups of
factors were found to affect urban growth in different degrees as indicated by odd ratios:
(1) population density, distances to the nearest urban clusters, activity centers and roads,
and high/low density urban uses (all with odds ratios < 1); and (2) distance to the CBD,
number of urban cells within a 7 · 7 cell window, bare land, crop/grass land, forest,
and UTM northing coordinate (all with odds ratios > 1). The predicted spatial patterns
of the future urban areas are the compromised outcomes of the above driving forces.

The previous research by Yang and Lo (2003) using Clarke’s CA model (Clarke & Gay-
dos, 1998) for the same study area predicted the future patterns under three scenarios:
unchecked spontaneous growth, consideration of road planning and environmental pro-
tection, and controlled growth. The first two scenarios generated very similar patterns
characterized by huge compact urban agglomerations. The last scenario led to a pattern
very similar to what is predicted from this study: urban growth areas will mainly be
around existing urban areas and close to major roads, while some new clusters located
at a distance from the existing urban areas can also form. Like the CA model, the logistic
regression has the ability to incorporate organic, spontaneous, and diffusive growth mech-
anisms, road influence, as well as ecological preservation and environmental protection
practices. The influence of distance to the nearest urban cluster corresponds to Clarke’s
‘edge growth’ rule. This study included distance to roads or ‘‘road-gravity’’ as exogenous
variables. The road influence is one of the growth rules in Clarke’s CA model. The inter-
action term – number of urban cells in a window – has successfully captured the neighbor-
hood effect which is also one of the growth rules in the dynamic CA model. Like the CA
model, the logistic regression model is spatially explicit. The probability map generated
from the model can be used to predict where urban growth will occur.

In the broader context of land use/cover change modeling, the criterion for
evaluating a land use/cover change model is how effectively the model deals with the
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dimensions of space, time, human and scale dynamics. This study has shown that a
logistic regression model has strengths relative to a CA model in two aspects. First,
the logistic regression model can not only includes such biophysical variables as
SLEUTH (slope, land use, exclusion, urban extent, transportation, hillshade) in the
CA model, it is better for incorporation of human drivers. The model’s ability to
include as many demographic and econometric variables as necessary allows us to better
understand human forces in shaping urban patterns. Second, logistic regression allows
multi-scale calibration due to less demand of computation resource. Thus the model
is better for capture of scale dynamics. This study used the fractal method to determine
the optimal scale at which most processes operate to drive the urban growth and the
model has the highest prediction ability. Previous computation intensive CA models
were calibrated at a single resolution determined by data measurement levels or con-
strained by the computation power, which may not be appropriate for best understand-
ing the land use change processes.

Despite the logistic regression model’s strengths, this study has shown the limitations of
the model. First, although the logistic regression model can incorporate demographic
data, it suffers the same limitation as CA models in considering other factors which
may have effects on the urban growth. These factors include, for example, personal or
household preferences for locations, urban or regional development policies, and global-
ization of economy. Second, unlike the CA model, the logistic regression model is not tem-
porally explicit. Its output probability map can only indicate where urban development
will occur, but not when this will take place. Although the model prediction used updated
raster layers of explanatory variables to generate an urban growth probability map, it does
not have the ability of self-modification of the system status, hence a lack of temporal
dynamics. Third, while the optimum resolution can be determined by multi-scale modeling
and the fractal analysis, the modeling based on the single resolution could not capture all
the processes behind urban growth. Modeling at the optimum scale ignores some processes
that might be important and operate at lower-end or higher-end scales away from the opti-
mal scale determined.

Several lessons have been learned from the study and suggest further research. First,
when using a logistical regression model to study urban growth, we must be cautious
about spatial autocorrelation that often exists in spatially referenced data which violates
the assumption of the model. This study has demonstrated the use of GIS data aggrega-
tion, inclusion of spatial coordinates as variables and stratified random sampling to
account for the effect of spatial autocorrelation. Second, the lack of ability to consider per-
sonal behaviors necessitates combination of the emerging land use modeling technique –
agent based modeling (ABM) (Rand et al., 2003) with statistical models. Third, to over-
come the weakness of logistical regression modeling in dealing with temporal dynamics,
further research will have to seek a self-modifying approach so that the model variables
can update themselves automatically. A possible solution would be to combine a logistic
regression model with a CA model such that the predicted probability values can partic-
ipate in the formulation of the rules in the dynamic simulation. Last, future research will
have to address the multi-scale characteristics of land use/cover systems by using multi-
level statistics or a hierarchical modeling structure so that the scalar dynamics of the land
use/cover change driving forces operating from both bottom-up (micro-behavior) and top-
down (such as regional planning policies) can be handled.
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