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Abstract

From exploratory spatial data analyses and geographically weighted regression (GWR), we found that previously hypothesized rela-
tionships between socioeconomic status (SES), race, urbanization and mortality were present and significant in the Atlanta metropolitan
area for 1995–1999 and that the relationships between these predictors and mortality varied spatially, such that distinctive geographic
patterns emerged. These patterns reflect the spatial processes operating in Atlanta for the past few decades, namely, rapid residential and
commercial development in the outer portions of the metropolitan area and a concurrent movement of the affluent white population
away from the central city, leaving behind a predominantly African American population with low SES. We also found that the relative
influence of each predictor on mortality varied spatially, with SES demonstrating the most dominant influence in the majority of the
study area and race demonstrating the most dominant influence in and near the City of Atlanta.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mortality rates reflect the overall health of populations.
The objective of this study was to analyze the geographic
distribution of mortality in the Atlanta metropolitan area,
a rapidly growing city with a social environment greatly
transformed since the 1980s. The purpose was to uncover
spatial processes that account for geographic disparities
in mortality rates.

Many public health studies show significant relation-
ships between area social-demographic variables and sev-
eral health-related outcomes. The studied dependent
variables for health-related outcomes ranged from health
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risk behaviors such as smoking (Frolich, Potvin, Gauvin,
& Chabot, 2002); adverse health outcomes such as low
birthweight (Gorman, 1999; Krieger et al., 2003), obesity
(Reidpath, Burns, Garrard, Mahoney, & Townsend,
2002), and cardiovascular disease (Jones & Duncan,
1995); and mortality (Huff & Gray, 2001). Other research-
ers established relationships between explanatory variables
and health perception (Pampalon, Duncan, Subramanian,
& Jones, 1999), the need for mental health services (Gold-
smith, Holzer, & Manderscheid, 1998), and neighborhood
social capital (Subramanian, Lochner, & Kawachi, 2002).

The range of sociodemographic variables hypothesized
to influence health is also broad. Variables for which signif-
icant associations with health have been demonstrated
include income (Gravelle, Wildman, & Sutton, 2002; Sturm
& Gresenz, 2002), poverty (Braveman & Tarimo, 2002;
Krieger et al., 2002; Krieger et al., 2003), wealth (Duncan,
Daly, McDonough, & Williams, 2002), education (Kroks-
tad, Kunst, & Westin, 2002; Muller, 2002; Osler & Pres-
cott, 2003), occupation and employment status (Barnett,
Armstrong, & Casper, 1997; Gregorio, Walsh, & Paturzo,
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1997), housing tenure (Brimblecombe, Dorling, & Shaw,
1999), deprivation (Haynes & Gale, 2000), and socioeco-
nomic status (Huff & Gray, 2001).

Composite measures of socioeconomic status (SES) are
also used to assess its relationship to health outcomes (Huff
& Gray, 2001; Reidpath et al., 2002). In addition, many
studies included the well-known Townsend, Jarman, and
Carstairs indices of deprivation from the United Kingdom
(Carstairs & Morris, 1989; Jarman, 1983; Townsend, Phil-
limore, & Beattie, 1988). These indices were derived from a
priori reasoning of factors causally associated with depri-
vation. Socioeconomic and deprivation indices also have
the attractive quality of combining the effects of several
potentially collinear variables into one construct. For the
Atlanta study, this approach was used to assess the effect
of socioeconomic status.

The degree to which an area is urbanized is another con-
textual variable for explaining geographic variations in
health. Leviton, Snell, and McGinnis (2000) proposed
two conceptual frameworks for research and practice relat-
ing to urban health promotion: (1) an urbanization frame-
work and (2) an inner-city ecology framework. The
urbanization framework refers to the population growth
of an urban area: increases in the size of the urban area,
increases in population density, increases in population
heterogeneity, changes in population mobility, changes in
the industrial base (including deindustrialization), emerg-
ing issues of social justice, and spatial proximity of the rich
and poor. They argued that urbanization is accompanied
by increased anonymity, less socializing with neighbors,
less involvement in community associations, separation
from familiar connections and social supports, loss of con-
nectedness, and decreased trust of others. All these factors
negatively affect health directly and indirectly.

Conversely, urbanization confers benefits that affect
health through the increase in physical and human
resources; affluent and middle-class neighborhoods; and
easy access to diverse cultures, entertainment venues, and
educational opportunities. However, crime, time pressure,
high cost of recreational facilities, and disparate access to
recreational facilities result in an unequal distribution of
the benefits of urbanization among rich and poor. Like-
wise, the negative aspects of urbanization are not equally
experienced by the population.

Leviton et al.’s (2000) inner-city ecology framework
focuses on issues unique to central city areas: the concen-
tration of the poor and minorities, deindustrialization, dis-
investment in the downtown central business district, loss
of inner-city jobs, and relative isolation of the population
from amenities and job opportunities in the surrounding
suburban areas. The result is a concentration in the inner
cities of people with low incomes and low social status,
both of which are well-known determinants of poor health
and behaviors that increase morbidity and mortality.

In a study of metropolitan Tokyo, Japan, Tanaka, Tak-
ano, Nakamura, and Takeuchi (1996) found that mortality
was positively correlated with several measures of urbani-
zation, including population density, commercial-zone
land area as a percentage of total land area, and urban land
area as a percentage of total land area. These relationships
held even after adjustment for income and education.
However, Tanaka et al. noted that the relationship was
not linear: as population density, urban area as a percent-
age of total area, and non-farmland and non-woodland
area as a percentage of total land area increased, mortality
decreased to a point; then mortality increased slightly as
these indicators increased beyond that point. They also
found that areas with a high proportion of residential land
area and a low proportion of industrialized land area (i.e.,
suburbs) were related to low mortality rates. They con-
cluded that residential-condition indicators concerning
housing, land use, and local economic activities were
related to age-adjusted mortality rates, both before and
after they adjusted for the socio-economic levels of individ-
ual residents.

Verheij (1996) confirmed that urbanization has positive
and negative effects on health, and that there are disparities
in the distribution of positive and negative influences on
health that result from urbanization. Others who found
positive correlations between urbanization and health
include Geronimus (2000) and McDade and Adair
(2001); their results indicated significant, positive correla-
tions between population density, social and material
deprivation, and mortality.

Recent developments in tools and techniques for local
spatial analysis provide new opportunities for using social
science data to examine spatial relationships. In particular,
since the mid-1990s the emphasis on local statistics and
spatial analysis (Anselin, 1995; Fotheringham, 1997; Kir-
by, 1996) prompted re-examinations of associations
between independent variables and outcomes of interest,
which used to be studied using traditional analytic meth-
ods. Geographers cautioned that biases could be intro-
duced when methods designed for analyzing non-spatial
data are used to study geographically aggregated data
(Brunsdon, Fotheringham, & Charlton, 1998; Fothering-
ham, 1997; Unwin & Unwin, 1998). For example, multiple
regression techniques were commonly used to study rela-
tionships among data that were aggregated by geographic
areas. This approach can lead to violations of the necessary
assumptions for ordinary least squares (OLS) regression,
namely the independence of observations and uncorrelated
normal errors with constant variance. Because many if not
most phenomena with a geographic component exhibit
varying degrees of spatial autocorrelation, it is highly likely
that these OLS assumptions are violated, which often
results in underestimating confidence intervals for parame-
ter estimates and an unduly high level of significance of the
parameter estimates and in the overall regression model.

Another problem with using spatial, or global, regres-
sion techniques is that one must assume that the observed
relationships between independent variables and the depen-
dent variable are constant over space (Fotheringham, 1997;
Fotheringham, Brunsdon, & Charlton, 2002). That is, one
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must assume no variation in the strength or in the signifi-
cance of the relationship anywhere in the study area: the
assumption of spatial stationarity. When dealing with
aggregated socioeconomic data and other data derived
from the study of human populations, this assumption of
stationarity is often untenable (Fotheringham et al.,
2002). Therefore, to accurately describe relationships
among variables, it is advisable to use methods that
account for nonstationarity in the data.

Because of the recent development of tools and tech-
niques for local spatial analysis, we now can analyze both
spatial patterns and, perhaps more importantly, the under-
lying processes involved in forming such spatial patterns.
In this study of mortality in Atlanta, we used tools and
techniques developed specifically to account for spatially
autocorrelated data and for nonstationary statistical rela-
tionships. The purpose of this analysis was to understand
the spatial processes, revealed by intra-urban patterns, in
the relationship between sociodemographic and urbaniza-
tion characteristics and mortality.

Atlanta was chosen for this analysis because it experi-
enced rapid suburbanization during the last two decades
of the 20th-century, typical of those cities described as
‘‘edge cities” (Garreau, 1991) and characterized by urban
geographers as the ‘‘urban realms” model (Hartshorn &
Muller, 1989). Atlanta also was chosen because of its his-
torical pattern of racial residential segregation (Holloway
& Wyly, 2001; Wyly & Holloway, 1999). Both spatial pro-
cesses, land-use change and residential segregation, were
hypothesized to have (1) an indirect influence on mortality
through their influence on the spatial distributions of socio-
economic characteristics and (2) a direct influence on mor-
tality through structural mechanisms of concentration of
opportunity and the isolation of the predominant minority
population.

2. Methods

We hypothesized that (1) census-tract–level2 variables
for socio-demographic characteristics and urbanization
for metropolitan Atlanta, Georgia, in 1990, are spatially
correlated, thus violating a major assumption for ordinary
least squares regression and (2) the relationships between
these independent variables and all-cause mortality exhibit
spatial nonstationarity. Therefore, through the use of geo-
graphically weighted regression (GWR) we tested the
hypothesis that socio-demographic characteristics and
urbanization for metropolitan Atlanta, Georgia, in 1990,
have significant and spatially varying relationships with
all-cause mortality for 1995–1999.
2 Census tracts are small, relatively permanent statistical subdivisions of
a county, designed to be homogeneous with respect to their socioeconomic
characteristics. Census tracts generally have between 2500 and 8000
persons (US Census Bureau, 2000). For the Atlanta study area, the mean
population was 6131 persons per census tract.
2.1. Data sources

Mortality data were obtained from the Georgia Division
of Public Health, in Atlanta; the data cover the 13 urban
counties (Fig. 1) for 1980 – 1999. However, only data from
1995 to 1999 had a database field for the decedents’ resi-
dential address, which is necessary for geocoding and com-
putation of tract-level mortality counts and rates.
Socioeconomic and demographic data were obtained from
Geolytics, Inc., a retail provider of value-added US decen-
nial census data. Specifically, US Census Long Form (SF-
3) data were obtained for 1990. Because mortality data
were available only for 1995–1999, we used 1990 census
data and 1990 satellite imagery to preserve temporal order-
ing between independent and dependent variables. County
boundary files were obtained from the Digital Environ-
mental Atlas of Georgia, Version 2, published jointly by
the Georgia Geologic Survey and the US Geological Sur-
vey. Census-tract boundary files were obtained from the
US Census Bureau for 1990. Satellite imagery was obtained
from the US Geological Survey, EROS Data Center, for
1990 (Scene ID: LT5019036037090268, Landsat 5, The-
matic Mapper, Path 019, Rows 036-037 [50% offset],
acquired September 25, 1990). The satellite image was used
to derive land-use and land-cover data for the period of the
research project. Black-and-white and color aerial photo-
graphs of portions of the metropolitan Atlanta area (par-
ticularly Gwinnett County, 1988 and 1989) were used for
ground truthing of satellite-derived land-use and land-
cover data for 1990. Road network data were obtained
from the National Transportation Atlas Database: 2004,
published by the US Department of Transportation,
Bureau of Transportation Statistics, and from ESRI (Envi-
ronmental Systems Research Institute, Redlands, CA).
These data were used to assist in classification of land use
and land cover.

The mortality data obtained from the Georgia Division
of Public Health consisted of individual records of dece-
dents along with their last known residential street address.
To derive area-based counts and rates at the census-tract
level, we geocoded (address-matched) the residential loca-
tions using a geographic information system (GIS). The
original database contained 102,016 death records for the
13 counties of the study area. The mortality data were geo-
coded with two software packages and two street file dat-
abases in an effort to maximize address match rates. The
first geocoding iteration was performed in ArcInfo 8.3TM

(Environmental Systems Research Institute, Redlands,
CA) by using the US Census Bureau’s 2000 TIGER Line
Files as the street matching file. Interactive matching was
conducted on unmatched records. All records (matched
and unmatched) were then geocoded with a second soft-
ware application and database (Centrus Desktop 4.0 and
Sagent Company’s Address Coding Module). This
improved the overall geocoding rate, particularly in rapidly
developing areas, and served as a check on the accuracy of
the geocoding results from ArcInfo/TIGER processing.
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Fig. 1. Thirteen-County metropolitan Atlanta study area.
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Both ArcInfo and Centrus allow interactive matching. The
successfully matched addresses were merged from the Arc-
Info and Centrus database information, resulting in match
rates ranging from 83% (Paulding County) to almost 98%
(Henry County). The match rate disparity generally is con-
sistent with patterns of development; newer and more rap-
idly changing counties fared worse than did more
established counties. The resulting file of geocoded deaths
totaled 97,910 records, for an overall geocoding rate of
96.03%. This rate exceeds the 85% threshold demonstrated
by Ratcliffe (2004) to be the minimum acceptable geocod-
ing rate for address-based point pattern datasets.

The 444 census tracts (all the tracts within the 1990
boundary of the Atlanta metropolitan area), were reduced
to an analysis set of 431 tracts, to remove four tracts that
were unpopulated in 1990 and nine tracts in which the
observed number of deaths during the 5 years (1995–
1999) was less than 30.

2.2. Standardized mortality ratios

The mortality counts for each 1990 census tract were
computed using ArcInfo 8.3, by spatially joining the
point-level mortality data to the census tract boundary
shapefile, a vector data format for geographic information
systems software. Mortality counts were used in all subse-
quent regression analyses. However, we first wanted to
assess spatial variations in mortality: to do so requires
the computation of mortality rates to account for geo-
graphic variations in census tract populations. We began
by computing crude mortality rates (number of deaths
per 100,000 population) in the GIS using 1997 estimates
of census tract populations. Because crude mortality rates
are highly influenced by the age-structure of the population
for whom they are computed, comparisons of crude rates
between groups or areas can be misleading. This is espe-
cially problematic if some census tracts contain high pro-
portions of elderly people and other census tracts contain
low proportions of elderly people, because their risk of
death is higher than young people’s. Therefore, we used
indirect age-adjustment procedures to calculate standard-
ized mortality ratios (SMRs) (US Department of Health
& Human Services, 2001), with estimated death rates per
age-group for the US population in 1997 as the reference
data. For crude rate and SMR calculations, we used 1997
as the reference year because it was the midpoint of the 5
years, 1995–1999.

By computing SMRs, we were able to make meaningful
comparisons of mortality risk among census tracts. SMRs
are calculated as a ratio of the observed number of deaths
for a particular area divided by the expected number of
deaths for that area:
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SMR ¼ Observed deaths

Expected deaths
¼ DP

Rsi � P i
; ð1Þ

where D is the total number of observed deaths in the pop-
ulation (in this case, each census tract), Rsi is the age-spe-
cific death rate in age stratum i in the standard
population, and Pi is the population of age stratum i in
the observed population (each census tract). If a census
tract has an SMR of 1.0, that census tract would have
the same approximate mortality risk as that of the refer-
ence population (in this case, the 1997 US population). If
the SMR is greater than 1.0, then the mortality risk is
greater than that of the reference population. If the SMR
is less than 1.0, the mortality risk is lower than that of
the reference population. For example, a census tract with
an SMR of 1.20 has a 20% higher mortality risk than that
of the reference population; moreover, it is possible to com-
pare mortality risks among census tracts in the Atlanta me-
tro area: a census tract with an SMR of 1.20 has a 20%
higher mortality risk than a census tract with an SMR of
1.00.

We then used the SMRs to explore spatial geographic
patterns in mortality for metropolitan Atlanta (Fig. 2)
and found that they follow a roughly north–south dichot-
omy. Most census tracts with relatively low mortality risk
are in the northern arc of generally suburban areas (north-
Fig. 2. Standardized mortality ratios (SMR
ern Fulton County, eastern Cobb County, northern
DeKalb County, southern Forsyth County, and Gwinnett
County), and the highest relative risks for mortality are con-
centrated in the inner core of the metropolitan area: the City
of Atlanta and southeast DeKalb County. There are excep-
tions to this pattern, notably the low mortality risk in afflu-
ent Fayette County to the south of the metropolitan area
and some pockets of elevated mortality risk in the outer
arc of suburban tracts. The northern suburban tracts with
high mortality risk are less affluent than the other northern
suburban tracts, and they have a higher proportion of peo-
ple from minority races. Examples of such areas are the cit-
ies of Smyrna and Marietta in Cobb County, Norcross and
Buford in Gwinnett County, Newnan in Coweta County,
Dallas in Paulding County, Douglasville in Douglas
County, and Canton in Cherokee County.
2.3. Selection of independent variables

The remaining independent variables were obtained or
derived from 1990 US census data, and were selected on
the basis of a review of studies relating to mortality and
other health outcomes. Of the variables reviewed in the
previous section, we chose the following: (1) the percentage
of population living below the federal poverty line in 1990;
SMRs
0.39 - 0.84 

0.85 - 0.97 
0.98 - 1.13 
1.14 - 1.48 
1.49 - 9.23 

s), metropolitan Atlanta, 1995–1999.
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(2) the percentage of population over age 18 in the civilian
workforce unemployed during the past year (1989); (3) the
percentage of population in 1990 over age 25 with high
school diploma or equivalent; (4) the percentage of housing
units that were owner-occupied in 1990; and (5) the per-
centage of blacks in the total population in 1990. We chose
these five variables because of the strength of their associ-
ations with health outcomes as demonstrated through pub-
lic health research. These variables represent different
constructs that have both independent and interactive
effects on health risk behaviors and health outcomes:
income, employment status, educational attainment, resi-
dential stability, and race. The 1990 sociodemographic
variables are described in Table 1.
2.4. Urbanization variable

Land-use and land-cover data were derived from an
unsupervised classification of remotely sensed satellite
imagery of metropolitan Atlanta for 1990. The Landsat
image was processed in ERDAS Imagine 8.7 (Leica Geo-
systems, Inc., Atlanta, Georgia) using the ISODATA pro-
cedure (Jensen, 1996), with classification accuracies (data
not shown) exceeding the commonly accepted minimum
accuracy standard of 85% for remotely sensed data (Ander-
son, Hardy, Roach, & Witmer, 1976). Six categories of
land use and land cover were used: high-density urban,
low-density urban, cultivated or exposed land, cropland
or grassland, forested land, and water (Fig. 3). Areas in
the high-density urban class were predominantly commer-
cial and industrial areas, and areas in the low-density urban
class were mostly residential areas.

After image classification, the extents of urbanized areas
(high-density and low-density urban classes) were deter-
mined and expressed as percentages of the total land area
for each census tract. There are many alternative defini-
tions and measures of urbanization (Harris & Longley,
2000; Longley, Batty, & Shepherd, 1991), such as areas
with populations or population densities exceeding prede-
fined thresholds, and areas experiencing growth in urban-
ized land use above a predefined threshold rate.
However, we chose the combination of high- and low-den-
sity urban land use as a percentage of total land area pri-
Table 1
Descriptive statistics for variables, metropolitan Atlanta, 1990

Variable Definition

Poverty Percentage of population living below the federal poverty
Homeownership Percentage of housing units owner-occupied, 1990
High school

graduation
Percentage of population over age 25 with high school dip
1990

Unemployment Percentage of population over age 18 in the civilian work
during preceding year, 1989

Urbanization Percentage of land area urbanized (high-density and low-d
use), 1990

Black population Percentage of total population black, 1990
marily to be consistent with Tanaka et al. (1996) use of
urban land area as a percentage of total land area. This
approach is similar to the conceptualization of urbaniza-
tion from Kaplan, Wheeler, and Holloway (2004), in that
it allows us to differentiate rural areas from urban areas
within the study area. Yet, we differed from Kaplan et al.
in that we measured land use at the pixel level (and summa-
rized by zone – census tract), as opposed to computing the
ratio of urban-to-total population by zone.
2.5. Socioeconomic status (SES) index

Because multicollinearity can be problematic for soci-
odemographic variables when included in subsequent mul-
tivariate regression models, we then examined correlation
matrices (data not shown), which confirmed our reserva-
tions about multicollinearity. To avoid problems from mul-
ticollinearity, we constructed a socioeconomic status (SES)
index through factor analysis, using the poverty, homeow-
nership, high school completion, and unemployment vari-
ables. The SES index was scaled such that high values of
the index correspond to low socioeconomic status and vice
versa. We specifically excluded the urbanization and race
variables because we wanted to analyze independently the
effects of race and urbanization. In addition, since we were
attempting to derive an index for socioeconomic status, we
did not want to confound the effect of SES with the effect of
race. We used SPSS 13 (� SPSS, Inc., Chicago, IL, 2004) to
perform the factor analysis, using Principal Axis Factoring
for factor extraction. We selected the first extracted factor,
with an eigenvalue of 3.012, which explained 69.03% of
total variance, as the factor to represent SES. No other fac-
tor’s eigenvalue exceeded 1.000; therefore we used only the
first extracted factor for subsequent analyses. Communali-
ties and factor loadings are in Table 2. Eigenvalues and
explained variance are in Table 3.
3. Analysis

3.1. Spatial autocorrelation

Because the SMRs for 1995–1999 (Fig. 2) exhibited a
visually distinct spatial pattern, with areas of low mortality
Minimum
(%)

Maximum
(%)

Mean
(%)

SD Moran’s
I

line, 1990 0.00 88.00 13.56 16.11 0.67
0.00 90.11 47.50 22.81 0.52

loma or equivalent, 22.10 100.00 76.98 16.66 0.65

force unemployed 0.00 41.00 6.38 5.43 0.55

ensity urban land 3.47 100.00 40.48 23.05 0.83

0.00 100.00 31.11 35.89 0.83



Fig. 3. Land-use/land-cover, metropolitan Atlanta, 1990.

Table 2
Communalities and factor loadings for SES index

Variable Initial
communalities

Extraction
communalities

Factor 1
loadings

Poverty 0.827 0.987 0.994
Homeownership 0.422 0.361 �0.601
High school

graduation
0.636 0.640 �0.800

Unemployment 0.744 0.773 0.879
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concentrated in the northern arc and areas of high mortal-
ity concentrated in the urban core, we assessed the degree
of spatial autocorrelation in the data. We performed
exploratory spatial data analysis (ESDA) with GeoDa
(Beta version 0.9.5-i) (Anselin, 2004). GeoDa contains
many tools for ESDA, including global measures of spatial
Table 3
Total variance explained for SES factor analysis

Factor Initial eigenvalues

Total Percentage of variance Cumulative percent

1 3.012 75.305 75.305
2 0.606 15.143 90.448
3 0.263 6.563 97.011
4 0.120 2.989 100.000
autocorrelation (Moran’s I and Geary’s C) and local indi-
cators of spatial autocorrelation (LISAs) (Anselin, 1995)
such as Local Moran’s Indices:

I i ¼ zi

X
wijzj; ð2Þ

where zj are observations, and wij is a weights matrix equal
to 1/dij in which dij represents the Euclidean distances be-
tween the ith and jth points, where these points refer to
the geometric centroids of the census tracts.

We found that the SMRs were spatially autocorrelated
(Moran’s I = 0.38). Not surprisingly, the Moran’s I values
for the independent variables were also high (Table 1),
ranging from 0.52 for home ownership rates to 0.83 for
urbanization as well as for the percentage of blacks in the
total population. The latter value is especially congruent
with historical patterns of residential segregation by race
Extraction sums of squared loadings

age Total Percentage of variance Cumulative percentage

2.761 69.031 69.031
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in the Atlanta area (Holloway & Wyly, 2001; Wyly & Hol-
loway, 1999). Spatially, this is manifested by extreme con-
centrations of black residential populations in the southern
half of the City of Atlanta as well as southern DeKalb
County and southern Fulton County.

Moran’s I values indicate only the presence of spatial
autocorrelation globally. That is, one is given a single over-
all indication of whether there is spatial autocorrelation in
the dataset but no indication of whether there are local
variations in spatial autocorrelation across the spatial
Moran's I = 0.38

LISA for SMRs 

County Boundaries
Atlanta City Limits

High- High 
High - Low
Low -High 
Low -Low 

Moran's I = 0.83 

LISA for % Black Population

County Boundaries
Atlanta City Limits

High- High 
High - Low
Low -High 
Low -Low 

a b

c

Fig. 4. LISAs for SMRs (a), urbanization (b), black populatio
extent of the data. To localize precisely the presence and
magnitude of spatial autocorrelation, LISAs such as Local
Moran’s Indices are necessary. We computed Local Mor-
an’s Indices for an age-adjusted variant of the dependent
variable (mortality counts) – SMRs – for each of the indi-
vidual socioeconomic variables and for the urbanization
and race variables.

In all cases we discovered distinctive patterns of local-
ized spatial autocorrelation (Fig. 4). In all Fig. 4 maps,
the dark red areas correspond to census tracts with high
Moran's I = 0.83

LISA for Urbanization 

Moran's I = 0.67

LISA for SES Indices

County Boundaries
Atlanta City Limits

High- High 
High - Low
Low -High 
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County Boundaries
Atlanta City Limits
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d

n (c), and SES index (d), metropolitan Atlanta, 1995–1999.
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SMRs and high degrees of localized spatial autocorrela-
tion. Dark blue areas correspond to census tracts with
low SMRs and high degrees of localized spatial autocorre-
lation. Light red areas correspond to census tracts with
high SMRs that are spatial outliers; that is, these high
SMR tracts are in areas in which there is a high degree
of spatial autocorrelation of census tracts with low SMRs.
Conversely, the light blue areas represent census tracts with
low SMRs in close proximate location to census tracts with
high degrees of spatial autocorrelation for high SMRs.

For the dependent variable, high concentrations of mor-
tality (Fig. 4a) were observed in the City of Atlanta
(depicted by a bold black polyline in all Fig. 4 maps); clus-
ters of low mortality were observed in the northern arc of
affluent suburban areas. The LISA for urbanization
(Fig. 4b) is especially distinctive, with high concentrations
of urbanization in the center of the study area (correspond-
ing to the City of Atlanta) and low concentrations of
urbanization in the outer rural and exurban fringes of the
study area. This pattern is entirely consistent with the typ-
ical urbanization patterns for large metropolitan cities,
where the central urban core is first developed and remains
highly urbanized, then followed by a suburban fringe, and
lastly by an outer, undeveloped rural ring.

The concentration of the black population for metro
Atlanta is evident (Fig. 4c) in the broad band across the
center of the study area, corresponding to the southern half
of the City of Atlanta, southern DeKalb County, and por-
tions of southern Fulton County. Conversely high concen-
trations of the white population are observed across the
entire northern half of the study area along with some
smaller concentrations scattered to the south of the study
area and corresponding to highly affluent areas of Fayette,
Henry, Clayton, and Rockdale Counties.

We computed the LISA for the SES index, to determine
whether our initial concerns about spatial autocorrelation
and spatial nonstationarity still pertained to our newly cre-
ated independent variable. As we expected, the SES index
variable (Fig. 4d) had a pattern of local spatial autocorre-
lation that was broadly representative of the combination
of all four of the constituent variables: high concentration
of high SES index values (i.e., low socioeconomic status) in
the City of Atlanta and high concentration of low SES
index values (high socioeconomic status) in the ring of
affluent suburbs, with only a few spatial outliers in the
study area. This analysis reinforced our hypothesis that
the use of a global regression technique is inappropriate
because we anticipated that the relationship between SES
and mortality is spatially nonstationary.

The high degree of spatial autocorrelation in this dataset
suggests that the use of traditional multivariate regression
methods is inappropriate because of the violation of the
assumption of independent observations. The distinctive
patterns of local spatial autocorrelation suggest that there
are underlying spatial processes in the study area that result
in spatial nonstationarity of any relationships between the
independent and dependent variables. These analyses sup-
ported our initial hypotheses regarding the data’s spatial
distribution. We then used regression analyses to test the
hypothesis of a spatially varying relationship between the
independent variables and mortality.

Initially we ran a series of Poisson regression models in
StataTM SE 9.2 (Statacorp, College Station, TX, 2006) with
all-cause mortality (number of deaths per census tract,
aggregated from 1995 to 1999) as the dependent variable.
We used the following individual variables in the initial
regression models to determine the specific effects of indi-
vidual variables on the dependent variable: the percentage
of the population living below poverty in 1990, the percent-
age of the population in 1990 aged 25 or older who had a
high school diploma or equivalent, the percentage of the
civilian work force aged 18 or older who was unemployed
in the preceding year (i.e., 1989), the percentage of housing
units that were owner-occupied in 1990, urbanized land as
a percentage of total land area in 1990, and blacks as a per-
centage of the total population in 1990. Because age is a
primary risk factor for death, we included the expected
number of deaths as an offset variable. For each of the
independent variables in the bivariate analyses, we found
significant and intuitive relationships to mortality.

3.2. Geographically weighted regression

Geographically weighted regression (GWR) was devel-
oped by Brunsdon et al. (1998) and Fotheringham et al.
(2002) to provide locally varying parameter estimates for
regression models where spatially varying relationships
are hypothesized. GWR is an extension of traditional
regression techniques, which for an OLS or Gaussian
regression model, can be expressed as:

yi ¼ b0 þ
X

k

bkxik þ ei; ð3Þ

where yi and xik are the dependent and independent vari-
ables at point i, b0 is a constant, bk are parameters to be
estimated, and ei is an error term at point i. The GWR
extension of the Gaussian model takes the form:

yi ¼ b0ðui; viÞ þ
X

k

bkðui; viÞxik þ ei; ð4Þ

where (ui,vi) denotes the coordinates of the ith point in
space and b0 and bk are continuous functions of (u,v) at
point i (Fotheringham et al., 2002). The GWR software
program (version 3.0.16, � University of Newcastle,
2003) produces unique parameter estimates for all points
i, by spatially weighting the observations according to their
proximity to i. Observations closer to the ith point are gi-
ven more weight than are observations further away. The
weights are derived through a distance-decay function.
To limit the number of data points considered for each lo-
cal parameter estimate, a spatial kernel is used at the ith
point. The kernel can be either fixed, in which case the
bandwidth of the kernel is also fixed, and thus varying
numbers of observations are weighted for the computation
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of each local parameter. This is not problematic for evenly
distributed data points, but where there is great variability
in data point density (as is the case for the metropolitan
Atlanta census tracts, which vary considerably in areal ex-
tent), an adaptive kernel is more appropriate. With an
adaptive kernel, an equal number of data observations
are weighted and used for local parameter estimation. In
addition to local parameter estimates, GWR also provides
local goodness-of-fit measures and local residuals. The
GWR model can be compared with the corresponding glo-
bal regression model, through an F test and by comparison
of Akaike Information Criteria (AIC), to determine
whether the GWR model is a significant improvement.

We chose to implement an extension of the basic GWR
regression technique: GWR Poisson regression (Fothering-
ham et al., 2002; Nakaya, Fotheringham, Brunsdon, &
Charlton, 2005). Because mortality is a count variable,
we used Poisson regression. The Poisson regression model
can be expressed as:

ki ¼ P i exp b0 þ
X

k

bkxik

 !
; ð5Þ

where ki is the mean of a distribution for a count yi, where
yi is the dependent variable, the bs are regression functions,
the xs are independent variables, and Pi is an offset used to
account for a population at risk. The GWR extension to
the Poisson model takes the form:

ki ¼ P i exp b0ðui; viÞ þ
X

k

bkðui; viÞxik

 !
; ð6Þ

where (ui,vi) denotes the coordinates of the ith point in
space and b0 and bk are continuous functions of (u,v) at
point i, as with the Gaussian GWR model (Fotheringham
et al., 2002).

In our implementation of Poisson GWR, we used all-
cause mortality as the dependent variable, the expected
number of deaths as an offset variable, and the race, urban-
ization, and SES index variables as the predictors. We
chose an adaptive bi-square kernel and calibrated band-
width selection by cross-validation (convergence reached
after nine iterations). Local parameter estimates were com-
puted for each of the census tract areas by using their geo-
metric centroids (measured in UTM Eastings and
Northings) as the regression points. Local parameter esti-
mates, residuals, local Z-values, and local R-square esti-
mates were exported to ArcGISTM 9 (Environmental
Systems Research Institute, Inc., Redlands, CA, 2005) for
mapping of spatial patterns.

4. Results

The spatial patterns of the parameter estimates from
GWR are quite interesting (Fig. 5a–d). Although the global
Poisson model provides an overview of the relationships
between mortality and SES, urbanization, and race,
GWR allows us to see how and where these relationships
vary spatially and in magnitude and significance across
the Atlanta metropolitan area. The intercept estimates
are depicted in Fig. 5a. Without the influence of the model
parameters, the predicted level of mortality is lowest in the
general area of north Fulton County, north DeKalb
County, and west Gwinnett County. Higher levels of mor-
tality are predicted in the southern half of the City of
Atlanta, south DeKalb County, north Henry County,
north Clayton County, and to a lesser degree in the outly-
ing counties to the west and north. In Fig. 5b, the local
parameter estimates for the SES index suggest that low
SES is particularly significant in estimating all-cause mor-
tality in the northern suburbs of metropolitan Atlanta,
and less significant and with a lesser absolute effect in the
southern half of the study area. Interestingly, there is a
small area along the Fulton/DeKalb border in which the
effect of low SES is negatively associated with mortality.

In Fig. 5c, highly urbanized land areas are positively
associated with high mortality in (1) portions of the City
of Atlanta, (2) the urban areas of Gwinnett County (City
of Norcross), which has a high percentage of Hispanics
and Asians, and (3) the southernmost areas of the study
area (including Henry County, Fayette County, Coweta
County, and southern Fulton County). Conversely, highly
urbanized land areas are negatively associated with high
mortality in (1) the northernmost counties (Cherokee, For-
syth, northern Fulton), (2) an area in the east composed of
portions of Rockdale, eastern DeKalb, northern Henry,
and northeastern Clayton counties, and (3) an area of cen-
tral Fulton County, including the extremely affluent Buck-
head neighborhood.

The local parameter estimates for the race variable are
depicted in Fig. 5d. The effects of race are particularly
strong and significant in the center of the study area (City
of Atlanta) and in the northern portion of the study area.
In the former case, the population is predominantly black,
and in the latter case, the population is overwhelmingly
white. This suggests two dynamics: (1) in the inner city,
structural processes resulted in the concentration of blacks
in urban poverty and its associated lack of opportunity and
(2) in the northern white suburbs (for example, Forsyth
County), remnants of historical racism may still be operat-
ing to deny blacks the economic opportunities available to
whites in these areas.

Local R-square estimates ranged from 0.73 in the south-
eastern corner of the study area to 0.96 in the northern and
western portions of metropolitan Atlanta. This indicates a
high degree of overall explanatory power for the GWR
model, with some spatial variation, perhaps due to an
unspecified variable that may have helped to improve the
explanatory power of the model in the southeastern corner
(e.g., portions of Rockdale and Henry counties). Spatial
autocorrelation of the residuals was assessed by computa-
tion of the Moran’s I index; for this model, Moran’s
I = �0.03, which is indicative of complete spatial random-
ness (CSR). We also checked for localized spatial autocor-
relation of the residuals by computing Local Moran
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Fig. 5. GWR parameter estimates for Intercept (a), SES (b), urbanization (c), and black population (d), metropolitan Atlanta, 1990.
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Indices in GeoDa. The results (data not shown) confirm
that there are no localized areas in which clustering of high
or low residuals were present.
Table 4
Global poisson parameter estimates

Parameter Estimate Standard error

Intercept �0.002 0.009
PURB90 �0.001 0.000
PBLK90 0.003 0.000
SES90 0.160 0.006
GWR also produces a set of parameter estimates for a
global Poisson model, to be used as a comparison with
the local Poisson model. Table 4 contains the regression
T Exp(B) SD (Exp(B))

�0.231 0.998 0.009
�2.802 0.999 0.000
25.864 1.003 0.000
26.163 1.174 0.007
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coefficients for the global Poisson regression model. The
global Poisson model reached convergence after three iter-
ations, with an AIC of 4034.94. The regression parameters
of the global Poisson model suggest that increases in the
socioeconomic status of a census tract, ceteris paribus, are
associated with decreases in mortality rates. Increases in
the degree to which an area is urbanized, ceteris paribus,
are associated with decreases in mortality rates. Increases
in the number of blacks as a percentage of total popula-
tion, ceteris paribus, are associated with increases in mor-
tality rates. The AIC of the GWR Poisson model,
2963.18, is a large reduction from the global model AIC,
which indicates that the GWR model is an overall improve-
ment over the global model. Furthermore, although the
results from the global Poisson model provide an accurate
summary of the overall relationships between the indepen-
dent variables and mortality, they oversimplify and
obscure the interesting and significant spatially varying
relationships revealed through the GWR Poisson model.

5. Discussion

The spatially varying effect of each independent variable
can be examined through local comparisons of the relative
City of Atlanta
County Boundaries

Fig. 6. Relative magnitude of association
magnitudes of parameter estimates, whereas with a global
regression model, the relative effect of each independent
variable can be assessed only for the study area as a whole.
By comparing relative magnitudes of parameter estimates,
we can conceptualize the relative effects of the independent
variables as a continuous function across space. Because
we have three independent variables, six pair-wise compar-
isons are possible. Racial composition has a greater relative
relationship to mortality than does urbanization in most of
the northern two-thirds of the metropolitan area. Urbani-
zation has a greater relative effect than racial composition
in these two areas as well as in the southern third of the
area. Racial composition and urbanization both have a
greater relative effect than does SES in one small area along
the Fulton–DeKalb border, including a portion of the City
of Atlanta; otherwise, SES has a greater relative effect than
racial composition and urbanization throughout the study
area. Fig. 6 depicts these relationships.

The spatial distribution of parameter estimates for the
effects of race (Figs. 5d and 6) are particularly interesting
and can be interpreted through Geronimus’s (2000) study
on health problems unique to central cities. He argued that
structural influences resulted in modern ghettos in central
cities. Modern urban environments were developed under
Rank Order of Relative
Association with Mortality

SES > %BLK > %URB
SES > %URB > %BLK
SES > %BLK and %URB  (%BLK = %URB)
%BLK > %URB > SES
%BLK > SES > %URB
Not significant  

of independent variables to mortality.
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the influence of race-conscious policies. For example, high-
way construction and public housing projects isolated
black neighborhoods. Racial covenants, discriminatory
mortgage lending practices, and racial steering prevented
blacks from moving to newly developing suburban areas.
White residents were offered government-subsidized low-
interest home mortgage loans, which facilitated the migra-
tion of white residents to the suburbs. Publicly funded
transportation projects provided convenient links between
suburban homes, employment areas, and cultural or enter-
tainment centers. Indeed, Holloway and Wyly found
strong evidence to support the structural influences theory
in metropolitan Atlanta (Holloway & Wyly, 2001; Wyly &
Holloway, 1999). Meanwhile, economic restructuring led
to a shift from a manufacturing to a service economy,
which resulted in the loss of many high-paying unionized
manufacturing jobs in the city and, eventually, high unem-
ployment (Gong & Wheeler, 2002). The combined effect of
housing policies and practices and economic restructuring
was to prevent many blacks from escaping the poverty that
resulted from the loss of jobs in the urban center. At the
same time, few public and private funds were invested in
central urban areas (e.g., funds to maintain and supervise
infrastructure, public housing, and public parks). The
inability of black residents to migrate from the central city,
combined with the decline of these areas, led to a further
decline in the quality and value of the housing stock.
Therefore, a primary means of accumulating wealth (which
is highly correlated with health outcomes) through home
ownership was denied to blacks.

As Geronimus (2000) noted, these factors are important
to health because of the strong association between health
and poverty. People in poverty tend to be exposed to a
greater extent than middle-class or wealthy people to
social, psychosocial, and physical factors associated with
increased morbidity and mortality. These factors include
acute and chronic stress, overburdened or disrupted social
supports, material deprivations, and exposure to hazards
such as toxins or pollutants in the physical environment.
Table 5
Land-use and land-cover statistics, metropolitan Atlanta, 1984–2000

Land-use/land-cover

High-density urban Hectares
Percentage of land area

Low-density urban Hectares
Percentage of land area

Cultivated or exposed Hectares
Percentage of land area

Cropland or grassland Hectares
Percentage of land area

Forest Hectares
Percentage of land area

Water Hectares
Percentage of land area
The psychosocial stresses often lead to increases in
unhealthy behaviors and a lowered ability to access health
information, health services, or technologies that could
protect them from exposure to health hazards or reduce
their risk from such exposure. These negative influences
resulting from poverty are often exacerbated for people
from racial minorities, because their poverty often extends
over their entire lifespan, thus suggesting a cumulative
adverse health effect from being persistently disadvantaged.

The spatially varying relationships between urbaniza-
tion and mortality are more challenging to explain. This
may be due, in part, to limitations in our operational def-
inition and measure of urbanization. Our measure is
cross-sectional; we are not capturing land-use trends, such
as suburban development or urban decline. Therefore, we
may be characterizing different spatiotemporal dynamics
with the same measure. On the one hand, we have a
point-in-time reflection of suburban development in the
previously rural outlying areas, where an increase in the
proportion of urban land use would be expected to be asso-
ciated with low mortality rates. On the other hand, we have
a point-in-time quantification of the proportion of com-
mercial and industrial land use in the inner city. What
may be implicitly captured by our measure is the extent
to which this latter area has experienced deindustrialization
and decline. The financial resources to support industry
and commerce may have been withdrawn over time, yet
the physical infrastructure of commerce and industry
(e.g., high-density urban land use) remain. Therefore, we
may expect that in the inner city areas, those census tracts
with high proportions of urban land use would be associ-
ated with high mortality rates.

Most of the outer fringe counties (e.g., Coweta, Chero-
kee, Forsyth, and Paulding) were rural in the 1980s. As
urbanization began to spread, these areas became rapidly
suburbanized as the growing (and generally affluent) popu-
lation expanded outward in search of new residential
opportunities. New suburban downtowns emerged (Harts-
horn & Muller, 1989) especially in the northern tier of
1984 1990 2000

67508 79733 96557
6.45 7.61 9.28

64077 109366 174975
6.12 10.43 16.72

57614 43088 52144
5.51 4.11 4.98

170924 118945 104890
16.33 11.35 10.02

668119 676258 595775
63.84 64.52 56.90

18311 20736 21974
1.75 1.98 2.10



Table 6
Changes in land-use/land-cover statistics, metropolitan Atlanta, 1984–2000

Land-use/land-cover Change: 1984–1990 Change: 1990–2000 Change: 1984–2000

High-density urban Hectares 12225 16824 29049
Percentage change 18.11 21.10 43.03

Low-density urban Hectares 45289 65609 110898
Percentage change 70.68 59.99 173.07

Cultivated or exposed Hectares �14526 9056 �5470
Percentage change �25.21 21.02 �9.49

Cropland or grassland Hectares �51979 �14055 �66034
Percentage change �30.41 �11.82 �39.63

Forest Hectares 8139 �80483 �72344
Percentage change 1.22 �11.90 �10.83

Water Hectares 2425 1238 3663
Percentage change 13.24 5.97 20.00
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metro counties (Gwinnett, northern Fulton, Cobb, and
Forsyth). These emergent suburban downtowns in the
northern counties as well as areas of the central core were
easily accessible by automobile or public transportation
from the northern suburbs. By 2000, the transition from
rural to suburban land use had become quite clear from
an analysis of remotely sensed satellite data. These changes
are clearly reflected in land-use statistics, such as urban
land use, derived from those satellite data (Tables 5 and
6).3
6. Conclusions

We found that previously hypothesized relationships
between SES, race, and urbanization and mortality were
present and significant in the Atlanta metropolitan area
for 1995–1999 and that the relationships between these pre-
dictors and mortality varied spatially, such that distinctive
geographic patterns emerged. This indicates there is a com-
plex interaction of urbanization and the social environment
across Atlanta, and these forces have differential, spatially
varying, relative impacts on the health of Atlantans. These
geographic patterns reflect the spatial processes that oper-
ated in Atlanta for the past few decades, namely, rapid res-
idential and commercial development in the outer portions
of the metropolitan area (especially to the north) and the
movement of the affluent white population away from
the central city, leaving behind a predominantly African–
American population with low SES. Therefore, our ever-
changing urban landscapes and the social forces that create
them need to be studied in a broader context, one in which
health and the conditions that influence health are consid-
ered. From a practical standpoint, urban planning, eco-
nomic development, and policies that affect the social
environment all need to be considered for their potential
ramifications for the health of the population. In retro-
3 Data for 1984 and 2000 were derived from Landsat TM and ETM+
imagery; imagery and LULC maps not shown.
spect, if policymakers whose decisions influenced residen-
tial mortgage lending practices, transportation, and
urban development in Atlanta had known about and con-
sidered the potential impacts of their decisions on the
health of Atlanta residents, the spatial patterns that we
see revealed through our GWR analysis, in which racial,
social, and geographic health disparities4 are glaringly
revealed, quite possibly may have been averted.

This study demonstrates the usefulness of applying geo-
graphically weighted regression (GWR) analysis to mortal-
ity at the intra-urban scale. By using GWR, we are able to
interpret local effects of race, SES, and urbanization on
mortality. The global regression model fails to capture such
detail, and therefore prevents us from being able to inter-
pret the complex interplay of these contextual factors
throughout the Atlanta area. In addition, this study high-
lights the application of LISA statistics to exploratory spa-
tial data analysis for mortality. The relative ease of use of
GeoDa and GWR as well as the increasing availability of
GIS technology make these analytic tools and methods
valuable for public health researchers.

Despite its usefulness, GWR has limitations. First, it
assumes spatial nonstationarity for all variables, while in
reality some explanatory processes may exhibit spatial sta-
tionarity. The present version (Release 3.0) of GWR does
not allow for mixed (i.e., semi-parametric) models in the
sense that some variables can be treated as stationary
and others treated as nonstationary. Additionally, it can-
not be used for spatially varying hierarchical models.
Therefore, individual and area-level data cannot both be
included in a GWR model. Wheeler and Tiefelsdorf
(2005) caution against using GWR without giving consid-
eration to potential repercussions of multicollinearity
among exogenous variables, an issue they found to be
problematic in a study of bladder cancer mortality. Fur-
thermore, they demonstrate that local regression coeffi-
4 SMRs for the study area ranged from 0.39 (95% CI: 0.33–0.45) to 9.23
(95% CI: 6.77–11.69).
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cients can be collinear, and they suggest that caution
should be exercised in interpreting spatial patterns of
GWR parameter estimates.

Recent research by Mei, Wang, and Zhang (2006) has
shown that it is feasible to extend GWR to a Mixed
Geographically Weighted Regression (MGWR) model.
Lebreton (2005) offers an alternative to GWR, namely
the neural coefficient smooth transition autoregressive
(NCSTAR) model, in which local estimates are derived
for every observation of the dataset as a nonlinear function
of its geographical position and other variables. Further-
more, confidence intervals can be computed for NCSTAR
estimates.

We chose to use an ecological approach because of data
availability limitations as well as the desire to analyze influ-
ences on health that could be attributed to area effects.
Accordingly, care must be taken not to attribute these rela-
tionships to individuals. Instead, these results suggest ave-
nues for further research in order to better understand the
complex relationships between the characteristics of indi-
vidual people, their physical environment, and their individ-
ual behaviors. In addition, we need a better understanding
of how these relationships affect health. By including indi-
vidual risk behavior and health outcomes data, it would
be possible through hierarchical modeling techniques to
analyze more precisely such relationships and, more impor-
tantly, to suggest appropriate public health policies and
interventions to improve the overall health status of the
population and to reduce health disparities. With future
enhancements to GWR or with alternatives such as
MGWR or NCSTAR, it might be possible to study mixed
models and geographically varying hierarchical models.

For a more comprehensive analysis of the relationship
between the social and physical environments and health
outcomes, a lifecourse approach (Kuh & Ben-Shlomo,
1997) may be helpful. This approach emphasizes the accu-
mulation of health risks that result from lifelong exposures
to adverse physical and social environments. Recent devel-
opments in Space Time Intelligence Software, or STIS,
(Jacquez, Goovaerts, & Rogerson, 2005) may make possi-
ble the visualization and analysis of temporally dynamic
geospatial data, that would be necessary for assessing the
relationship between lifecourse data and health outcomes.
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