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Abstract

Many industries are geographically concentrated. Many mechanisms that could account
for such agglomeration have been proposed. We note that these theories make different
predictions about which pairs of industries should be coagglomerated. We discuss the
measurement of coagglomeration and use data from the Census Bureau’s Longitudinal
Research Database from 1972 to 1997 to compute pairwise coagglomeration measurements
for U.S. manufacturing industries. Industry attributes are used to construct measures
of the relevance of each of Marshall’s three theories of industry agglomeration to each
industry pair: (1) agglomeration saves transport costs by proximity to input suppliers or
final consumers, (2) agglomeration allows for labor market pooling, and (3) agglomeration
facilitates intellectual spillovers. We assess the importance of the theories via regressions
of coagglomeration indices on these measures. Data on characteristics of corresponding
industries in the United Kingdom are used as instruments. We find evidence to support each
mechanism. Our results suggest that input-output dependencies are the most important
factor, followed by labor pooling.



1 Introduction

We know that industries are geographically concentrated.1 We know that this concentration

is too great to be explained by exogenous spatial differences in natural advantage.2 We have

an abundance of theories for this concentration.3 But we do not which of these theories

are important or even right. This paper uses patterns of coagglomeration–the tendency

of different industries to locate near to each other–to assess the importance of different

theories of geographic concentration.

Marshall (1920) emphasized three different types of transport costs–the costs of moving

goods, people, and ideas–that could be reduced by industrial agglomeration. First, he

considered transport costs for goods and argued that firms will locate near suppliers or

customers to save shipping costs. Second, he developed a theory of labor market pooling

in which firms located near one another can share labor. The larger labor pool created

by agglomeration allows workers to move to more productive firms when there are shocks.

Third, he began the theory of intellectual spillovers by arguing that in agglomerations, “the

mysteries of the trade become no mystery, but are, as it were, in the air.” Firms, such as

those described by AnnaLee Saxenian (1994) in Silicon Valley, locate near one another to

learn and to speed their rate of innovation.

Although each of these determinants certainly contributes to agglomeration in some

industries, assessing their aggregate relative importance is challenging because they all

predict that firms will co-locate with other firms in the same industry. One approach

pioneered by David B. Audretsch and Maryann P. Feldman (1996) and Stuart S. Rosenthal

and William C. Strange (2001) is to examine cross-industry variation in the degree of

agglomeration, e.g. regressing the degree to which an industry is agglomerated on the

importance of R&D to the industry. In this paper we propose an alternate approach: we

study the agglomeration process through the lens of how industries are coagglomerated.

This can potentially exploit the fact that the theories make different predictions about
1See P. Sargant Florence (1948), E. M. Hoover (1948), Victor Fuchs (1990), Paul Krugman (1991a), and

Glenn Ellison and Edward L. Glaeser (1997).
2See Ellison and Glaeser (1999).
3See Johann Heinrich von Thünen (1826), Alfred Marshall (1920), and Krugman (1991b).
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which pairs of industries will tend to coagglomerate.4 For example, if transport costs for

goods are important, then firms in an industry should be agglomerated near industries

that are their customers or suppliers. If labor market pooling is important, then industries

should locate near other industries that employ the same type of labor. Our approach, like

those of the other papers mentioned above, uses industry characteristics as covariates. One

could worry that these are endogenous and reflect the industry’s geography. Our second

main empirical innovation is to use characteristics of U.K. industries as instruments for the

characteristics of their U.S. counterparts.

We begin in Section II with some material on the measurement of coagglomeration. We

review the index of coagglomeration proposed in Ellison and Glaeser (1997), note that a

simpler equivalent definition can be used when measuring pairwise coagglomeration, and

further develop the economic motivation for the index as a measure of the importance of

cross-industry spillovers and shared natural advantage.

Section III describes the data used to generate our coagglomeration index and presents

some basic descriptive results. We base our coagglomeration measures on establishment-

level data from the Census of Manufactures. This data set allows us to calculate co-

agglomeration for every pairwise combination of three-digit Standard Industrial Classifica-

tion (SIC) industries at the state, metropolitan area, and county levels.

Section IV reviews Marshall’s three theories and discusses the covariates we will use to

assess the importance of different reasons for co-location. We use input-output tables to

construct proxies for the importance of transport costs for goods. We use the correlation

across industries in their employment of different occupations to measure the potential gains

from labor market pooling. Finally, we use data on technology flows and patent citations

to construct proxies for the importance of technological spillovers. Our empirical approach

is to regress the extent to which each pair of industries is co-located on the extent to which

these two industries buy and sell from each other, hire the same type of workers, and share

ideas. One potential concern with this approach is that the measures may not be innate

characteristics of industries: firms may buy and sell from one another because they are
4See J. Vernon Henderson (2003) for a related approach: Henderson examines how plant-level produc-

tivity is related to the set of plants in the area.
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close, not be close because they buy and sell from each other. To address this, we use

British input-output tables, employment patterns, and patent citations to instrument for

our American measures.

Section V presents our main empirical results. The ordinary least squares relationships

support the importance of all three theories. Input/output relationships appear to be the

most important determinants of co-location. Given the remarkable decline of transportation

costs over the 20th century (Glaeser and Janet E. Kohlhase, 2004), it is striking that

transport costs remain so important. Industries that hire the same type of workers are

also quite likely to locate near one another. This effect is almost as strong as the role

of supplier/customer relationship. Our proxies for intellectual spillovers have a slightly

weaker, but still quite significant, impact on the tendency of industries to coagglomerate.

Our instrumental variables strategy delivers similar results.

Section VI concludes. Industrial co-location patterns are far from random. Firms

unsurprisingly locate near their customers and suppliers. They are almost as driven by the

advantages of sharing a large labor pool, and intellectual spillovers also matter.

2 Measurement of Coagglomeration

In this section we discuss an index of coagglomeration introduced in Ellison and Glaeser

(1997). We note that the index takes on a simpler form when used to measure pairwise

coagglomeration and we further develop the economic motivation for the index as a measure

of the importance of cross-industry spillovers and shared natural advantages.

2.1 Background

Consider a group of industries indexed by i = 1, 2, . . . , I. Suppose that a geographic whole

is divided into M subareas and suppose that s1i, s2i, . . . , sMi are the shares of industry i’s

employment contained in each of these areas. Let x1, x2, . . . , xM be some other measure of

the size of these areas, such as each area’s share of population or aggregate employment.

A simple measure of the raw geographic concentration of industry i is

Gi =
M∑

m=1

(smi − xm)2.
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Ellison and Glaeser (1997) note that it is problematic to make cross-industry or cross-

country comparisons using this measure because it will be affected by the size distribution

of plants in the industry and the fineness of the available geographic data. They propose

an alternate measure of agglomeration we will refer to as the EG index:

γi ≡
Gi/(1−

∑
m x2

m)−Hi

1−Hi
,

where Hi is the plant-level Herfindahl index of industry i.5 They show that the EG index

“controls” for differences in the plant size distribution and the fineness of the geographic

breakdown, in the sense of being an unbiased estimator of a parameter reflecting the im-

portance of natural advantages and spillovers in a simple model of location choice.

Ellison and Glaeser (1997) also propose a measure of the coagglomeration of a group

of I industries. Let wi be industry i’s share of total employment in the I industries. Let

s1, . . . , sM be the shares of the total employment in the group of I industries in each of

the geographic subareas. (Note that sm =
∑I

i=1 wismi.) Write G for the raw geographic

concentration for the I-industry group: G =
∑M

m=1(sm− xm)2. Write H for the plant-level

Herfindahl of the I-industry group: H =
∑

i w
2
i Hi. The EG index of coagglomeration is

(1) γc ≡ G/(1−
∑

m x2
m)−H −

∑I
i=1 γiw

2
i (1−Hi)

1−
∑I

i=1 w2
i

.

The index reflects excess concentration of the I-industry group relative to what would be

expected if each industry were as agglomerated as it is, but the locations of the agglom-

erations were independent. The particular form is motivated by a proposition relating the

expected value of the index to properties of the location-choice model.

Proposition 0 Ellison and Glaeser (1997)

In an I-industry probabilistic location choice model, suppose that the indicator variables

{ukm} for whether the kth plant locates in area m satisfy E(ukm) = xm and

Corr(ukm, u`m) =

{
γi if plants k and ` both belong to industry i
γ0 if plants k and ` belong to different industries.

Then, E(γc) = γ0.

5This is defined by Hi =
∑Ni

k=1
z2

ki, where k = 1, 2, . . . , Ni indexes the plants in industry i and zki is the
employment of plant k as a share of the total employment in industry i.
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2.2 A simpler formula

The EG coagglomeration index is a measure of the average coagglomeration of industries

in a group. A simpler equivalent formula can be given for the coagglomeration of two

industries.

Proposition 1 An equivalent formula for the EG coagglomeration index when I = 2 is

γc =
∑M

m=1(sm1 − xm)(sm2 − xm)
1−

∑M
m=1 x2

m

.

The formula makes clear that the EG coagglomeration index is closely related to the

covariance of the state-industry employment shares in the two industries. The denominator

rescales the simple covariance to eliminate a sensitivity to the fineness of the geographic

breakdown. Note that plant-level Herfindahls do not enter into the formula: the lumpi-

ness of plants causes an increase in the variance of the state-industry employment shares

that could be mistaken for within-industry agglomeration, but does not by itself lead to a

spurious increase in the cross-industry covariance. (Larger plant Herfindahls will, however,

make γc a noisier parameter estimate.)

2.3 Explicit models of location choice

Proposition 0 is in a sense quite general: it shows that the coagglomeration index is ap-

propriate if location decisions are made in any manner that satisfies one property. This

generality, however, is obtained at the expense of losing explicit connections to the eco-

nomics of location decisions and how they are influenced by natural advantages, spillovers,

etc. In this section we extend the single-industry model of Ellison and Glaeser (1997) to

make these connections.

We will discuss spillovers and natural advantages separately using two models with

many elements in common. There are two industries indexed by i = 1, 2, with N1 plants in

industry 1 and N2 plants in industry 2. Plants are indexed by k ∈ K1 ∪K2, with K1 being

the set of plants in industry 1 and K2 being the set of plants in industry 2. The plants

choose among M possible locations. Each plant has an exogenously fixed employment level

ek that is independent of its location choice.
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2.3.1 Spillovers

We conceptualize spillovers as mechanisms that make plant k’s profits a function of the

other plants’ location decisions. A general model of this form would be to assume that

firm k’s profits when locating in area m are of the form πkm = f(m, `−k, εkm), where `−k

is the vector of all plants’ location decisions and εkm is a random shock. A difficulty with

discussing the degree of geographic concentration in such a model is that the location choice

process becomes a game that can have multiple equilibria. For example, if plants k and

k′ receive substantial benefits from co-locating, then there may be equilibria in which the

two plants co-locate in any of several areas that are fairly good for each plant, and also an

equilibrium in which the plants forego the spillover benefits and locate in the areas that are

most advantageous for each plant separately. (This will only be an equilibrium if plant k’s

most-preferred location is sufficiently unattractive to plant k′ and vice-versa.) The different

equilibria will typically lead to different levels of measured concentration.

Ellison and Glaeser (1997) note that the impact of equilibrium multiplicity is substan-

tially reduced if one considers random “all-or-nothing” spillovers. To extend their analysis,

define a partition ω of K1 ∪K2 to be a correspondence ω : K1 ∪K2
→→ K1 ∪K2 such that

k ∈ ω(k) for all k and k′ ∈ ω(k) ⇒ ω(k) = ω(k′). Suppose that plants’ location decisions

are the outcome of game in which the plants choose locations in some (possibly random)

exogenously specified order and plant k’s profits from locating in area m are given by

log(πkm) = log(xm) +
∑

k′∈ω(k)

I(`k′ 6= m)(−∞) + εkm.

The first term on the right-side of this expression, xm, is the measure of the size of area

m we used when constructing the concentration index. Its inclusion allows the model to

match real-world data in which many more plants locate in California than in Wyoming.6

The second term reflects the impact of spillovers: the interpretation is that a spillover exists

between plants k and k′ if k′ ∈ ω(k) and that when spillovers exist they are sufficiently

strong so as to outweigh all other factors in the location decision process. The third term in
6Ellison and Glaeser (1997) note that their model has an equivalent formulation in which each potential

“location” is equally profitable on average and the reason why there are many more plants in California is
that California is an aggregate of a larger number of “locations”.
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the profit function, εkm, is a Weibull distributed random shock that is independent across

plants and locations.

Proposition 2 Consider the model of location choices with spillovers described above:

(a) The Perfect Bayesian equilibrium outcome is essentially unique. In equilibrium,

each plant k chooses the location m that maximizes log(xm)+εkm if no plant with k′ ∈ ω(k)

has previously chosen a location, and the location of previously located plants with k′ ∈ ω(k)

if some such plants have previously chosen a location.

(b) If 0 ≤ γs
0 ≤ γs

1, γ
s
2 or 0 ≤ γs

1, γ
s
2 and 0 ≤ γ0 ≤ min(1/N1, 1/N2), then there exist

distributions over the set of possible partitions for which

Prob{k′ ∈ ω(k)} =

{
γs

i if plants k and k′ both belong to industry i
γs

0 if plants k and k′ belong to different industries,

(c) If the distribution satisfies the condition in part (b), then in any PBE of the model

the agglomeration and coagglomeration indexes satisfy

E(γi) = γs
i

E(γc) = γs
0.

Remarks:

1. Note that Proposition 2 shows a degree of robustness to equilibrium selection: it shows

that the agglomeration index has the same expected value in any PBE of the sequential

move games obtained by ordering the plants in different ways.

2. Proposition 2 also shows some robustness to the distribution of spillover benefits. Our

agglomeration and coagglomeration indexes have the same expected value for any distri-

bution over partitions satisfying the condition in part (b). The proof of the proposition

describes a couple different ways to generate distributions satisfying the condition. One is

very simple technically and has a four point support. Another generates coagglomeration

patterns that look more reasonable by first creating clusters within each industry and then

joining clusters across industries.
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2.3.2 Shared natural advantage

Another mechanism that can lead to the coagglomeration of plants in two industries is

the presence in some areas of “shared natural advantages” that provide benefits to firms

in both industries. The natural advantages can be exogenous factors, as when a coastal

location makes a state attractive both to shipbuilding plants and to oil refineries. They can

also be endogenous factor advantages of the types described in each of Marshall’s theories,

e.g. airplane manufacturers and automobile parts manufacturers may be coagglomerated

because both benefit from locating in areas with skilled machinists.

To model natural-advantage influenced location choice, we suppose that profits for a

plant k that belongs to industry i(k) and locates in area m are given by

(2) log(πmk) = log(ηm + ξmi(k)) + εmk,

where the ηm, ξmi, and εmk are mutually independent random variables. The ηm can be

thought of as reflecting shared natural advantages of each area m that make it attractive

or unattractive to plants in both industries.7 The ξmi reflect additional factors that are

idiosyncratic to industry i. As in the previous model, we also assume that there are plant-

idiosyncratic factors, εmk.

Proposition 3 Suppose that profits are as in equation (2) and that each plant k chooses

the location m that maximizes πmk.

(a) Suppose 0 < γna
1 ≤ γna

2 , and that 0 ≤ γna
0 ≤ 1−γna

2
1−γna

1
γna

1 . Write δmi for ηm + ξmi.

Then, there exist distributional choices for the ηm and ξmi for which

E(δmi/
M∑

m′=1

δm′i) = xm,

Var(δmi/
M∑

m′=1

δm′i) = γna
i xm(1− xm),

Cov(δm1/
M∑

m′=1

δm′1, δm2/
M∑

m′=1

δm′2) = γna
0 xm(1− xm).

7These could include state policies as discussed in Thomas Holmes (1998).
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(b) If the distributions of the ηm and the ξmi are such that the conditions in part (a)

are satisfied and the εmk are independent Weibull random variables, then the agglomeration

and coagglomeration indexes satisfy

E(γi) = γna
i

E(γc) = γna
0 .

Remarks:

1. As is described in more detail in the proof of Proposition 3, one specification of the

shared- and industry-idiosyncratic natural advantages that can be made to satisfy the

conditions in part (a) involves choosing the ηm and ξmi to be χ2 random variables with

appropriately chosen degrees of freedom. In this specification the δmi are χ2 random vari-

ables with 2xm(1 − γna
i )/γna

i degrees of freedom. The lowest level of coagglomeration,

E(γc) = 0, obtains when there are no shared natural advantages: if we assume that the ηm

are identically zero, then the δmi are independent across industries and state-industry em-

ployments will be independent across industries. The greatest degree of coagglomeration,

E(γc) = 1−γna
2

1−γna
1

γna
1 , obtains when we make the shared natural advantages as important as

possible: if the ξm2 are identically zero, then all of the natural advantages affecting industry

2 are shared natural advantages.8

2. Ellison and Glaeser (1997) also provide a result characterizing the expected value of the

agglomeration index when both spillovers and natural advantages are present. This result

does not have a clean generalization to the multi-industry case. The difficulty is that both

agglomeration and coagglomeration are no longer independent of the equilibrium selection.

For example, if a spillover exists between plants in separate industries, there will be more

agglomeration in each industry if the plant from the more agglomerated industry chooses

the joint location than if the plant from the less agglomerated industry does so.

3 Data on Coagglomeration

In this section we present some descriptive statistics on coagglomeration patterns.
8In this case, the ηm are distributed χ2 with 2xm(1 − γna

2 )/γna
2 degrees of freedom and the ξm1 are χ2

with 2xm(
1−γna

1
γna
1

− 1−γna
2

γna
2

) degrees of freedom.
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We compute pairwise coagglomation measures for manufacturing industries using the

confidential plant-level data from the U.S. Census Bureau’s Census of Manufactures.9 We

examine the censuses from 1972 to 1997, each of which contains data on approximately

300,000 establishments employing about 17 million workers. We aggregate the plant-level

employment data in the census up to the county-level, PMSA-level, and the state-level and

compute coagglomeration metrics all three ways.10 At the industry level we focus on the

three-digit level of the 1987 Standard Industrial Classification (SIC3). The sample analyzed

in this section includes 134 industries, consisting of all SIC3 manufacturing industries except

Tobacco (210s), Fur (237), and Search and Navigation Equipment (381).11

Table 1 presents descriptive statistics of several measures of agglomeration and coag-

glomeration.12 The table is divided into three panels. The top panel presents indices

calculated from state-level employment data. The first row shows that the EG industrial

agglomeration index remains fairly stable between 1972 and 1982, and then falls by about

10% in the following decade. The next two rows summarize trends in the pairwise coagglom-

eration index. The mean pairwise coagglomeration is approximately zero. This is largely by

definition: our benchmark measure of a state’s “size” is its share of manufacturing employ-

ment so each industry’s deviations from the benchmark will be approximately uncorrelated

with the average of the deviations of all other industries. The standard deviation of the

coagglomeration index is more interesting, showing a decline (tighter distribution) from

1972 to 1997.

The second panel presents corresponding figures computed using PMSA-level employ-

ments. The average decline in agglomeration from 1982 to 1992 is smaller at this geographic

level and agglomeration appears to have increased from 1992 to 1997. The coagglomera-

tion distribution again shows a declining standard deviation. At the industry-pair level,
9Timothy Dunne, Mark Roberts, and Larry Samuelson (1989a, 1989b), Robert McGuckin and Suzanne

Peck (1992), Steven Davis, John Haltiwanger, and Scott Schuh (1996), and David Autor, William Kerr, and
Adriana Kugler (forthcoming) provide detailed accounts of this dataset.

10We use reported employment in all manufacturing establishments excluding auxiliary units as our mea-
sure x of aggregate activity in the geographic unit.

11These six industries are omitted due to major industry reclassifications at the plant-level in the Census
of Manufacturers that are difficult to interpret.

12Additional details on the dataset construction are catalogued in the data appendix. A portion of these
coagglomeration estimates have been released for public use by the Census Bureau and are available from
the authors upon request.
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the coagglomeration indices computed using the PMSA-level data have an 0.59 correlation

with indices computed from state-level data.

A nice feature of the Census of Manufactures is that one can track plants over time and

separate new plants from old plants. The third panel provides statistics on agglomeration

and coagglomeration indices for the new “startups” in each industry.13 The agglomeration

and coagglomeration of these startups could be different from the overall pattern because

they are less tied to past industrial centers than existing plants or the new establishments

of existing firms (see Guy Dumais, Ellison, and Glaeser 2002) and their location choices

come after the inter-industry dependencies described below are formed. These measures

are naturally more noisy than those calculated through total employment due to smaller

number of plants involved and the distinct sets of plants being considered in each census

year. The agglomeration data show an initial decline and a later increase, particularly in the

final census year. This pattern is reflected in the standard deviation of the coagglomeration

index too. At the industry-pair level, the correlation between coagglomeration measures

computed at the state level using all firms and those computed using new startups is 0.33.

Dumais et al. (2002) noted that the EG agglomeration index for an industry is highly

correlated over time (even relative to the magnitude of state-industry employment changes).

Table 2 indicates that coagglomeration indices are also highly correlated over time. For

example, the number in the upper left cell indicates that the correlation between the 1972

and 1977 coagglomeration indices for an industry-pair is 0.953. The correlations are at least

0.936 for each five-year period. The correlation between 1972 and 1997 coagglomeration

indices is still about 0.740.

Table 3 contains a list of the fifteen most coagglomerated industry pairs. Most involve

textile and apparel industries, which are heavily concentrated in North Carolina, South

Carolina, and Georgia. None of these coagglomerations are as strong as the within-industry

agglomerations of the most agglomerated industries. For example, Ellison and Glaeser
13More precisely, we first compute the total employment in each state-industry attributable to plants that

did not appear in the previous census and did not belong to a firm that existed in the previous census (in
this or any other industry). We then compute the agglomeration and coagglomeration indices using these
totals as the state-industry employments. Approximately 80% of new manufacturing plants are startups
in this sense. These startups enter at smaller sizes and account for about 50% of entering establishment
employment. See Kerr and Ramana Nanda (2006) for more detail regarding the differences in entry sizes
and entry rates between firm births and the expansion establishments of existing firms.
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(1997) find that γ = 0.63 for the fur industry (SIC 237). Many, many industry-pairs

have approximately zero coagglomeration. Negative values of the index arise when pairs of

industries are agglomerated in different areas. The lowest value of -0.065 obtains for the

coagglomeration of the Guided Missiles and Space Vehicles (376) and Railroad Equipment

(374) industries. We imagine that most strong negative coagglomerations like this are

mostly due to coincidence.

Appendix Table 1 summarizes the mean 1987 coagglomeration between SIC3 pairs

within SIC2 pairwise bins. The matrix confirms that SIC3 pairs within the same SIC2

category are generally positively coagglomerated. Apart from the high coagglomeration

of the subindustries of the textile industry (SIC 22), none of the means are very large.

This further illustrates that there is a great deal of idiosyncratic variation in coagglom-

eration levels across industry pairs. The remainder of this paper attempts to exploit this

variation to provide insight into the relative importance of different theories of geographic

concentration.

4 Why Do Firms Agglomerate? Empirical Methodology

The gains from concentration, whether in cities or geographic clusters, always ultimately

come from reducing some form of transport costs. Marshall emphasized that these transport

costs could be for goods, people, or ideas. Firms locate near suppliers or customers to reduce

the costs of buying or selling goods. Firms concentrate to reap the advantages from a large

pool of potential employees. Firms locate near one another to reduce the costs of accessing

new ideas and innovations. Our primary goal is to assess which of these are relatively more

important.

Interesting papers by Audretsch and Feldman (1996) and Rosenthal and Strange (2001)

have addressed this question by examining cross-industry variation in the degree to which

industries are agglomerated. The idea of these papers is that even though all three of

Marshall’s theories predict that industries will agglomerate, one might be able to tell them

apart by looking at which industries are more and less agglomerated. Audretsch and Feld-

man examine whether industries that are more R&D intensive are more agglomerated, and

Rosenthal and Strange add proxies for Marshall’s other factors as well, e.g. looking at
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whether agglomeration is greater in industries with highly educated workers and in which

material input costs are large relative to value-added.

The motivation for our empirical approach is that there may be a great deal of ad-

ditional information in coagglomeration patterns. For example, we can examine not just

whether input-intensive industries are agglomerated, but whether they are located near

the industries that produce their inputs. There is additional information about location

patterns to explore because industries that are agglomerated will be coagglomerated with

some industries but not with others. There is also additional potentially useful variance in

the explanatory variables at the industry-pair level: each industry has supplier/customer

relationships with some industries and not with others; each industry has labor needs that

are similar to those of some other industries and unlike those of others; and each industry

is more likely to benefit from ideas generated by some industries than others.

The empirical strategy in this paper is to look at whether industries locate near other

industries that are their suppliers or customers, near other industries that use similar labor,

or near other industries that might share ideas. We do this via regressions with pairwise

coagglomeration as the dependent variable and proxies for the importance of Marshall’s

agglomerative forces as the independent variables. Our goal is to learn not just about co-

agglomeration, but to learn more generally about the relative importance of goods, people,

and ideas in the location decisions of manufacturing firms.

In the following subsections, we briefly discuss the three agglomeration forces and our

approach to measuring them. Our empirical specification will look at the extent to which

every pair of industries co-locates, so our empirical strategy requires us to construct po-

tential explanatory variables reflecting the extent to which each pair of industries connects

in goods, people, and ideas. We will do this in a single cross-section: we regress the 1987

values of the coagglomeration index on measures of industry-pair connections constructed

using data from as close to 1987 as possible.14

14We did not feel that it was worthwhile to try to do this analysis in a panel setting for several reasons: we
know that industry-pair coagglomeration is very highly correlated over time; we think that the industry-pair
connections also do not change greatly over time; and data limitations would prevent us from calculating
several of our measures at higher frequency.
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4.1 Proximity to customers and suppliers: Goods

The most straightforward reason for firms to locate near one another is to reduce the costs of

getting inputs or shipping goods to downstream customers. When inputs are far away from

the eventual market, Marshall (1920) argued that firms will trade off the distance between

customers and suppliers based on the costs of moving raw inputs and finished goods. The

“new economic geography” of Masahisa Fujita, Krugman, and Anthony Venables (1999)

views reducing the costs of transporting goods as the driver behind agglomeration. To

assess the importance of this factor, we must assess the extent to which different industries

buy and sell from one another. We use the 1987 Benchmark Input-Output Accounts of the

Bureau of Economic Analysis to measure the extent that industries buy and sell from one

another. The input-output tables provide commodity-level flows which we aggregate up to

the three-digit SIC level. We define Inputi←j as the share of industry i’s inputs that come

from industry j. We also define Outputi→j as the share of industry i’s outputs that are sold

to industry j. These shares are calculated relative to all suppliers and customers, some of

whom may be non-manufacturing industries or final consumers.

Inputi←j and Outputi→j are share variables that could go from zero to one. In fact,

the highest observed value of Inputi←j is 0.39, which represents the share of inputs that

come to Leather Tanning and Finishing (SIC 311) from Meat Products (SIC 201). The

highest relative value of Outputi→j is 0.82, which represents the importance of output

sales from Public Building and Related Furniture (SIC 253) to Motor Vehicles and Equip-

ment (SIC 371).15 For most industry pairs, of course, Inputi←j and Outputi→j are ap-

proximately zero.16 To construct a single proxy for the connection in goods between a

pair of industries, we define undirectional versions of the input and output variables by

Inputij = max{Inputi←j , Inputj←i} and Outputij = max{Outputi→j , Outputj→i}. We

also define a combined input-output measure: Input-Outputij = max{Inputij , Outputij}.

One significant empirical issue is that these patterns of customers and suppliers may
15The large supplier share for Public Building and Related Furniture is due in part to the relatively small

output of the industry. The largest absolute supplier relationship, Plastic Materials and Synthetics (282)
sales to Misc. Plastic Products (308), has a relative output share of 0.32. The data appendix lists the top
five dependencies for all of the metrics discussed below in both absolute and relative terms.

16Approximately 70 percent are less than 0.0001.
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reflect rather than create geographic concentration. If an omitted variable causes two

industries to locate in the same region, they may start selling to each other. To address the

possibility that the vagaries of American geography are responsible for the input-output

measures, we turn to U.K. input-output tables. Keith Maskus, C. Sveikauskas, and Allan

Webster (1994) and Maskus and Webster (1995) use the 1989 Input-Output Balance for

the United Kingdom published by the Central Statistical Office in 1992. The original table

contained 102 sectors, but Maskus et al. (1994) aggregated those into 80 sectors that

could be matched with U.S. industries. We form UKInputij and UKOutputij measures as

described above using the U.K. input-output data and map these measures to the three-digit

SIC code system. We will use these U.K. measures as instruments for the U.S. input-output

relationships.

4.2 Labor market pooling: People

A second reason to coagglomerate is to take advantage of scale economies associated with

a large labor pool. Marshall himself emphasized the risk-sharing properties of a large

labor market. As individual firms become more or less productive, workers can shift across

employers thereby maximizing productivity and reducing the variance of worker wages (see

Diamond and Simon, 1990, for evidence and Krugman, 1991a, for a simple model). A

variant on this theory is that agglomerations make it possible for workers to match better

across firms and industries by providing a wider range of alternatives. Rotemberg and

Saloner (2000) provide yet a third model of labor-market based agglomeration where firms

cluster together so that workers will come and invest in human capital, knowing that they

do not face ex post appropriation. A final model that emphasizes employment sharing is

that new startups locate near older firms so that they can hire away their workers.

We will not be able to test between these different labor-based theories of agglomeration,

but we can test whether industries that employ the same type of workers locate near one

another. All of these labor market pooling hypotheses suggest that agglomeration occurs

because workers are able to move across firms and industries. These cross-industry moves

will only be likely if the industries use the same type of workers. Therefore we measure

the extent to which different industries hire the same occupations. We start with the 1987

15



National Industrial-Occupation Employment Matrix (NIOEM) published by the Bureau of

Labor Statistics (BLS). This matrix provides industry-level employment in 277 occupations,

and we use this detail to determine for each industry the share of its employment association

with each occupation, which we denote Shareio for industry i and occupation o. We then

construct a measure of the similarity of employment in industries i and j by defining

LaborCorrelationij to be the correlation of Shareio and Sharejo across occupations.

Table 4 contains summary statistics for this variable. The mean value is 0.470. The

measured correlations of one arise because the industry-occupation matrix reports data

for NIOEM industries, which is a coarser division than three-digit SIC industries. Motor

Vehicles (371) and Motorcycles, Bicycles and Parts (375) have the most similar employment

patterns (0.984) among industries with different NIOEM data.

As in the case of input-output matrices, reverse causality is a potential concern. In-

dustries may be hiring the same type of workers because they are located in the same

places and those workers happen to be there. To address this issue, we again turn to U.K.

data where employment patterns should not reflect the patterns of American geography.

Since the U.K. does not publish a detailed equivalent of the BLS NIOEM matrix, we con-

structed our own by pooling six years (2001-2006) of the U.K. Labour Force Survey (which

is roughly akin to the U.S. Current Population Survey). We then developed matrices of

the occupation-by-industry distribution of currently employed workers over all six surveys,

which together contained 224,528 employed workers and 42,948 workers in manufacturing.

We mapped the British industry codes into the American system, but kept the occu-

pation measures in their British format. Using this data, we calculated correlations in

occupation employment shares between every two British industries just as we did for the

American industries. This measure will be used as an instrument for the American labor

correlation measure.

4.3 Intellectual or technology spillovers: Ideas

A final reason that firms co-locate is to speed the flow of ideas. Marshall himself emphasized

the advantages that accrue to firms when workers learn skills quickly from each other

in an industrial cluster. Alternatively, firms may locate near one another so that the
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firm’s leaders can learn from each other. Saxenian (1994) argues that this is one cause of

industrial concentration in Silicon Valley. Glaeser and Matthew Kahn (2001) argue that

the urbanization of high human capital industries, like finance, is evidence for the role that

density plays in speeding the flow of ideas.

The potential for intellectual spillovers is harder to identify than the potential for trade

in goods and for sharing a labor pool. We construct proxies using data from two different

sources.

The first of these is Frederic Scherer’s (1984) technology flow matrix. Scherer’s matrix

is designed to capture the extent to which R&D activity in one industry flows out to ben-

efit another industry. This technology transfer occurs either through a supplier-customer

relation between these two industries or through the likelihood that patented inventions

obtained in one industry will find applications in the other industry. We develop two met-

rics, TechIni←j and TechOuti→j , for these technology flows that mirror Inputi←j and

Outputi→j described above. These dependencies are again directional in nature and are

calculated relative to total technology flows that include non-manufacturing industries and

government R&D. The strongest relative technology flows are associated with Plastic Ma-

terials and Synthetics (282) and its relationships to Misc. Plastics Products (308), Tires

and Inner Tubes (301), and Industrial Organic Chemicals (286).17 Our second data source

is the NBER Patent Database. Using data on patent citations for inventors residing in the

U.S., we develop a measure of the extent to which technologies associated with industry

i cite technologies associated with industry j, and vice versa. The measures PatentIni←j

and PatentOuti→j are normalized by total citations for the industries.18

For our regression analysis we construct undirectional measures of the intellectual
17Similar to the NIOEM industries, Scherer industries map to multiple SIC3s. Our regressions account

for and are robust to this overlap.
18The NBER Patent Data File was originally compiled by Bronwyn Hall, Adam Jaffe, and Manuel Tra-

jtenberg (2001). It contains records for all patents granted by the United States Patent and Trademark
Office (USPTO) from January 1975 to December 1999. Each patent record provides information about the
invention (e.g., technology classification, citations of prior art) and the inventors submitting the application
(e.g., name, city). The USPTO issues patents by technology categories rather than by industries. Com-
bining the work of Daniel Johnson (1999), Brian Silverman (1999), and Kerr (forthcoming), concordances
are developed between the USPTO classification scheme and SIC3 industries (a probabilistic mapping). In
practice, there is little directional difference between PatentIni←j and PatentOuti→j due to the extensive
number of citations within a single technology field, in which case the probabilistic citing and cited industry
distributions are the same.

17



spillovers across an industry pair, Techij and Patentij , in a manner analogous to our

construction of Input-Outputij .

Many authors have used patent citations to assess intellectual spillovers, but they are

obviously only an imperfect measure of intellectual spillovers.19 As Michael Porter (1991)

emphasizes, much knowledge sharing occurs between consumers and suppliers and this

may be captured more by input-output relationships than by these citations. Idea sharing

through the exchange of workers may be better captured by our occupational employment

correlation than through patent-based metrics. As such, we see our patent citation measure

as a proxy for the importance of exchanging technology rather than as a proxy for all forms

of intellectual spillovers.

Again there is the concern of endogeneity of intellectual exchanges, as industries may

cite each other’s patents because of locational proximity. To address this issue, we use the

U.K. patents in the NBER patent database to form a citations matrix based entirely on

non-U.S. patents. We use the patent flow numbers across U.K. industries as an instrument

for the U.S. technology flows.

5 Empirical Results

We now present our main empirical results. As described above, we examine the relation-

ships between the coagglomeration metrics calculated from the Census Bureau data and

various inter-industry dependency metrics. We first examine direct partial correlations ev-

ident in the U.S. data, and then we turn to instrumental variable regressions using U.K.

data to confirm a causal interpretation. We find evidence to support all three agglomera-

tion theories, and our results most strongly emphasize the importance of input-output and

labor pooling explanations.

The core empirical specification is

Coaggij = α + βLLaborCorrelationij + βIOInputOutputij + βT Techij + εij ,

where Coaggij is our measure of the pairwise coagglomeration between industries i and j

19See Zvi Griliches (1990), Jaffe, Trajtenberg, and Rebecca Henderson (1993), and Jaffe, Trajtenberg,
and Michael Fogarty (2000).
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in 1987. The sample contains 7381 industry pair observations: all distinct pairs from a

sample of 122 industries.20

We perform these analyses with four different versions of the dependent variable: we cal-

culate the coagglomeration measures using state-, PMSA-, and county-level total industry-

employment data, and also with the state-level data on employment in startups.

To make it easier to assess the magnitude of each variable’s importance, we normalize

both the left- and right-hand side variables in all of our regressions so that they have

standard deviation one.

5.1 Correlations in univariate regressions

Before proceeding to the actual regressions, Table 5 presents results from univariate regres-

sions where coagglomeration is regressed on four different measures of the different theory:

our measure of labor pool similarity (LaborCorrelation), our combined input-output mea-

sure (Input-Output), and the measures of technology flows from the Scherer matrix (Tech)

and from patent citations (Patent). Each cell of the table reports a coefficient from a sep-

arate univariate regression. Each row represents a different explanatory variable. Each

column corresponds to a different measure of coagglomeration. The first column uses the

state-level measures. The second column uses the PMSA-level measures. The third column

uses the county-level measures, and the fourth column uses the startup coagglomeration

measure.

Column (1) shows that the basic relationships between the first three measures and state

total employment coagglomeration are quite similar. A one standard deviation increase in

the labor correlation measure is associated with a 0.18 standard deviation increase in the

state-level coagglomeration measure. A one standard deviation increase in the input-output

measure is association with a 0.205 standard deviation increase in the coagglomeration

measure. The Scherer technology flow variable yields a 0.18 coefficient. The patent citation

variable yields a somewhat lower coefficient of 0.08.
20The sample omits twelve industries for which we could measure coagglomeration: all Apparel industries

(230s), a portion of Printing and Publishing (277-279), and Secondary Non-Ferrous Metals (334). Some
exclusions are due to an inability to construct appropriate Marshallian explanatory measures and some are
due to outlier concerns.
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At the PMSA and county levels, the gap between the magnitudes of the effects widens.

The coefficient on labor correlation is 0.106 and 0.082 in columns (2) and (3), respectively.

The coefficient on input-output in the same two columns is 0.167 and 0.130. The coefficient

on the Scherer technology flows is 0.148 and 0.107. Coagglomeration relationships are

weaker at the metropolitan level, which can be explained if firms are drawn to counties

because of other firms in neighboring counties.

The fourth column examines the coagglomeration of startup activity in industry pairs.

The coefficients in these regressions are lower than in the previous regression. Again, input-

output relationships seem to be the most important.

5.2 OLS regression results

Table 6 presents OLS coefficient estimates for our core empirical specification. Each column

reports coefficients from a single regression with a pairwise coagglomeration (measured

using state-level data) as the dependent variable. We find a coefficient of 0.146 for labor

correlation, 0.149 for the input-output measure, and 0.112 for the Scherer technology flows.

In the second column, we break input-output effects into an input measure and an

output measure. Both effects are quite significant and large.

The third column excludes all industry pairs involving two industries belonging to the

same two-digit SIC industry. There are both conceptual and methodological reasons for

this exclusion. Conceptually, we might think that industries within the same two-digit SIC

code are more likely to be driven to coagglomerate because of omitted geographic factors

that drive the location patterns of such similar industries. Methodologically, some of our

measures, like the technology flow measure, have variation that straddles the two-digit and

three-digit levels. The coefficient estimates in this regression are slightly lower, but similar

in magnitude to the base regression in the first column.

The regressions in the fourth, fifth, and sixth columns provide another robustness check.

For these regressions we have redefined the input-output and technology flow variables to

be means (rather than maximums) of the directional variables on which they are based.

In these specifications, input-output measures are generally more important, and labor

correlation is somewhat less important.
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Appendix Table 2 presents regressions similar to the base regression in the first column

of Table 6, but with the three alternative coagglomeration measures as the dependent

variables. These substitutions yield similar results.

Two general conclusions emerge from these regressions. First, all three of Marshall’s

(1920) theories regarding agglomeration find support in the coagglomeration patterns. Sec-

ond, the input-output relationship appears to be the most important contributor. The

labor pooling hypothesis finds the second most support.

5.3 IV regression results

In this section we present our core results using the U.K. instruments. Appendix Table 3

presents the first-stage regression estimates. The t-statistics are over 15 for the relevant

instruments.

Table 7 presents estimates from sixteen regressions. The regressions reported in Panel

A include the input-output and labor correlation measures of industry relatedness. The

odd regressions (1), (3), (5), and (7) are OLS results. One slight difference from Table 6

is that we exclude all industry-pairs involving two firms in the same two-digit industry.21

The even regressions (2), (4), (6), and (8) are the IV results. We present results for state-,

PMSA-, and county-level coagglomeration and for the coagglomeration of startups.

Comparing regressions (1) and (2) in Panel A shows that the IV specifications cause

the coefficients on labor correlation and the input-output measures to rise modestly. Both

coefficients remain significant.

The regressions in Panel B also include the Scherer measure of technology flows (with

U.K. patent flows as the instrument in the IV specifications). The first regression is Panel

B is an exact duplicate of regression (3) in Table 6, repeated to permit easy comparison

between the OLS and IV results. The differences between regressions (1) and (2) are modest

in magnitude, but the coefficients on input-output and technology flows become statistically

insignificant. The labor correlation remains robust.
21We made this change for two reasons. First, the U.K. input-output tables have a relevant limitation. We

explicitly exclude intra-industry flows at the SIC3 level from the U.S. input-output tables. In several cases,
we are required to map the same U.K. industry to multiple SIC3 industries within an SIC2. In these cases,
we are not able to distinguish flows across these SIC3 industries from intra-industry flows. In addition, some
of the instruments have limited variation within two-digit industries.

21



The regressions in columns (3) and (4) use PMSA-level coagglomeration as the depen-

dent variable. In both panels there is a reversal in the importance-ranking of the labor

correlation and input-output measures when we move from the OLS to the IV specifica-

tions. In the OLS estimates, input-output relationships look dramatically more important

than labor correlation. In the IV specification, labor correlation is both larger in magnitude

and more statistically significant.

At the county level in Panel A, input-output measures are more important and signifi-

cant in both the OLS and IV regressions. In Panel B, the IV measures are all statistically

insignificant.

Finally, regressions (7) and (8) examine the coagglomeration of new firm births in

industry pairs. In both panels the use of instrumental variables makes both the input-

output and labor correlation measures much more important. In each case, these the

coefficients are statistically significant in the IV specifications.

We interpret Table 7 as indicating that at least the labor correlation and input-output

relationships with coagglomeration are robust to our IV approach. The IV specification

generally causes coefficients to rise, but the increase is generally statistically insignificant.

When we include the technology flows measure, measurement becomes more difficult. Our

instrument for technology flows is highly correlated with the input-output measure, so it

becomes difficult to identify separately input-output effects and technology flow effects.

6 Conclusion

Our first conclusion from our analysis of coagglomeration patterns is that there is support

for the importance of all three theories of agglomeration. In the OLS specifications, all

variables have statistically significant and economically meaningful effects. The IV results

continue to show a robust effect for labor correlation. The input-output coefficients are

similar in magnitude or rise in size, but are less significant when we also include technology

flows. The technology flows measures are less robust when we use our IV measures.

Which of the theories seems to be more important? Our basic conclusion is that this

work suggests all three are roughly equal in magnitude. A one standard deviation growth

in labor correlation or input-output increases coagglomeration by around one seventh of a
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standard deviation. In some specifications, the technology flows effect is somewhat weaker,

but in others it is also close in magnitude.

It is unclear how these results would generalize to non-manufacturing industries. Ser-

vices are more costly to transport since they involve face-to-face interaction and therefore

we might think that input-output relationships are particularly important in that sector

(Jed Kolko, 1997). Ideas may be more important in more innovative sectors, so idea flows

might be more important elsewhere. But at least in manufacturing, transport costs for

goods, people, and ideas all still seem to matter, and all three of Marshall’s theories find

vindication in the data.
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Appendix A

Proof of Proposition 1: Note that

G =
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The final formula results from noting that 2w1w2 = 1−
∑2

i=1 w2
i when w1 + w2 = 1.

Proof of Proposition 2: Part (a) of the theorem follows immediately from backward
induction. The final plant to move must choose in this way. Given that the final plant will
locate in this way, the next-to-last plant maximizes its payoff by choosing the location that
maximizes log(xm) + εkm if it has no spillover with a previously located plant, because it
will receive full spillover benefits from the final plant (if such spillovers exist) regardless of
its location choice. The qualification “essentially unique” in the proposition reflects that
the maximizing choice is not unique when the maximizer of log(xm) + εkm is not unique.
This occurs with probability zero.

Part (b) states that we can choose a distribution over partitions that satisfies

Prob{k′ ∈ ω(k)} =

{
γs

i if plants k and k′ both belong to industry i
γs

0 if plants k and k′ belong to different industries,

if either of two hypotheses holds.
The first hypothesis is that 0 ≤ γs

0 ≤ γs
1, γ

s
2. In this case, a four-point distribution

suffices. Let ω0 be the fully disjoint partition: ω0(k) = {k} for all k. Let ωi be the partition
in which all plants in industry i are in a single cluster with the remaining plants disjoint:
ωi(k) = Ki if k ∈ Ki and ωi(k) = {k} otherwise. Let ω12 be the partition with all plants
in a single cluster: ω12(k) = K1 ∪ K2 for all k. The distribution that places probability
γs

0 on ω12, probability γs
i − γs

0 on ωi, and the remaining probability on ω0 has the desired
property.
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The second hypothesis is that 0 ≤ γs
1, γ

s
2 and 0 ≤ γ0 ≤ min(1/N1, 1/N2). In this case, it

is simplest to describe the construction of a distribution on the set of partitions on K1∪K2

as a two-step process. Let p1 be a probability distribution over partitions of K1 that satisfies
p1({ω|k′ ∈ ω(k)}) = γs

1 for all k, k′ ∈ K1. This can be done easily by putting probability γs
1

on the partition with all plants in a single cluster and the remaining probability on a disjoint
partition, and can also be done in many other ways if γs

1 is not too large. Similarly, let p2 be a
distribution over partitions of K2 that satisfies p2({ω|k′ ∈ ω(k)}) = γs

2 for all k, k′ ∈ K2. To
choose a partition of K1∪K2, first draw partitions ω1 of K1 and ω2 of K2 according to p1 and
p2. Let Ci be the set of clusters in partition i: Ci = {S ⊂ Ki|ω1(k) = S for some k ∈ K1}.
Assuming WLOG that |C1| < |C2|, let f be a one-to-one function from C1 to C2 chosen
uniformly from the set of all such functions. Then, define a partition ω on K1∪K2 by setting
ω(k) = ω1(k) with probability 1−|C2|γ0 and ω(k) = ω1(k)∪f(ω1(k)) with probability |C2|γ0

for k ∈ K1, and defining ω(k) = ω2(k) if k ∈ K2 and k has not previously been defined
as belonging to some ω(k) with k ∈ K1. (The randomization in this definition is perfectly
correlated across k and k′ if k′ ∈ ω1(k) and can have any correlation if k and k′ are not in
the same cluster.) It is straightforward that a partition created this way has the desired
property.

Part (c) is a corollary of Proposition 0. Let ukm be an indicator for plant k locating in
area m. A standard property of the logit model is that Prob{ukm = 1} = xm/

∑
m′ xm′ =

xm. The locations of plants k and k′ are identical if k′ ∈ ω(k) and independent otherwise,
so

E(ukmuk′m|ω) =

{
xm if k′ ∈ ω(k)
x2

m otherwise.

The unconditional expectation is E(ukmuk′m) = x2
m + Prob{k′ ∈ ω(k)}(xm − x2

m). Using
this we calculate

Corr(xkm, xk′m) =
E(ukmuk′m)− E(ukm)E(uk′m)√

Var(ukm)Var(uk′m)

=
x2

m + Prob{k′ ∈ ω(k)}(xm − x2
m)− x2

m√
xm(1− xm)xm(1− xm)

= Prob{k′ ∈ ω(k)}

Hence, the hypothesis of Proposition 0 is satisfied whenever the condition on the distribution
over partitions in part (b) of Proposition 2 holds.

Proof of Proposition 3: Suppose that the ηm and ξmi are independent χ2 random
variables with 1−γna

2
γna
2

2cmxm and 1−γna
i

γna
i

2xm − 1−γna
2

γna
2

2cmxm degrees of freedom, respectively,

for some constants cm ∈ [0, 1]. The additive property of χ2 random variables implies that
δmi is a χ2 random variable with 1−γna

i
γna

i
2xm degrees of freedom. Note that δmi and δm′i

are independent if m 6= m′. A standard result on Chi-square distributions implies that
δmi/

∑M
m′=1 δm′i has a Beta distribution with parameters 1−γna

i
γna

i
xm and 1−γna

i
γna

i
(1 − xm).22

22See Chapter 25 of Johnson, Kotz and Balakrishnan (1995).
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A Beta distribution with parameters θ1 and θ2 has expectation θ1/(θ1 + θ2) and variance
θ1θ2

(θ1+θ2)2(θ1+θ2+1)
. Using these formulas gives

E

(
δmi∑M

m′=1 δm′i

)
=

1−γna
i

γna
i

xm

1−γna
i

γna
i

= xm

Var

(
δmi∑M

m′=1 δm′i

)
=

(
1−γna

i
γna

i

)2
xm(1− xm)(

1−γna
i

γna
i

)2
1

γna
i

= γna
i xm(1− xm).

This shows that the distributions have two of the three desired properties given in part (a)
of the Proposition.

To complete the proof of part (a) it suffices to show that the third property,

Cov(δm1/
M∑

m′=1

δm′1, δm2/
M∑

m′=1

δm′2) = γna
0 xm(1− xm)

holds for some choice of cm ∈ [0, 1]. The covariance is a continuous function of cm. When
cm = 0, the covariance is zero. Hence, by the intermediate value theorem we can complete
the proof by showing that the covariance is equal to 1−γna

2
1−γna

1
γna

1 xm(1− xm) when cm = 1.
When cm = 1 the covariance can be written as

Cov

(
δm1∑M

m′=1 δm′1

,
δm2∑M

m′=1 δm′2

)
= Cov

(
ηm∑M

m′=1 ηm′
,

ηm + ξm2∑M
m′=1 ηm′ + ξm′2

)
,

= Cov
(

Y0

Y0 + Y ′0
,

Y0 + Y1

Y0 + Y ′0 + Y1 + Y2

)
,

where Y0 = ηm, Y ′0 =
∑

m′ 6=m ηm′ , Y1 = ξm2, and Y2 =
∑

m′ 6=m ξm′2. Note that Y0, Y ′0 , Y1

and Y2 are mutually independent Chi-square random variables. By rewriting the last term
on the right side of the above expression as Y0

Y0+Y ′0

Y0+Y ′0
Y0+Y ′0+Y1+Y2

+ Y1
Y1+Y2

Y1+Y2
Y0+Y ′0+Y1+Y2

we find
that it is equal to

Cov
(

Y0

Y0 + Y ′0
,

Y0

Y0 + Y ′0

Y0 + Y ′0
Y0 + Y ′0 + Y1 + Y2

+
Y1

Y1 + Y2

Y1 + Y2

Y0 + Y ′0 + Y1 + Y2

)

= Cov
(

Y0

Y0 + Y ′0
,

Y0

Y0 + Y ′0

Y0 + Y ′0
Y0 + Y ′0 + Y1 + Y2

)
+ Cov

(
Y0

Y0 + Y ′0
,

Y1

Y1 + Y2

Y1 + Y2

Y0 + Y ′0 + Y1 + Y2

)

Another standard property of Chi-square (and Gamma) random variables is that Y0
Y0+Y ′0

and

Y0 +Y ′0 are independent.23 This immediately implies that the second covariance in the line
above is zero. It also implies that Y0

Y0+Y ′0
and Y0+Y ′0

Y0+Y ′0+Y1+Y2
are independent. This implies

Cov
(

Y0

Y0 + Y ′0
,

Y0

Y0 + Y ′0

Y0 + Y ′0
Y0 + Y ′0 + Y1 + Y2

)
= Var

(
Y0

Y0 + Y ′0

)
E

(
Y0 + Y ′0

Y0 + Y ′0 + Y1 + Y2

)
.

23See Chapter 17 of Johnson, Kotz and Balakrishnan (1994).
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Plugging in the appropriate degrees of freedom into the formulas for the mean and variance
of Beta-distributed random variables we find that this is equal to

γna
2 xm(1− xm)

1−γna
2

γna
2

1−γna
1

γna
1

= xm(1− xm)
1− γna

2

1− γna
1

γna
1 .
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1972 1977 1982 1987 1992 1997

EG Agglomeration Index γ Mean 0.0398 0.0399 0.0392 0.0368 0.0351 0.0342

EG Coagglomeration Index γc Mean 0.0003 0.0003 0.0002 0.0004 0.0003 0.0003

EG Coagglomeration Index γc SD 0.0150 0.0139 0.0140 0.0133 0.0129 0.0124

EG Agglomeration Index γ Mean 0.0298 0.0292 0.0286 0.0285 0.0271 0.0299

EG Coagglomeration Index γc Mean 0.0003 0.0003 0.0002 0.0003 0.0002 0.0002

EG Coagglomeration Index γc SD 0.0086 0.0075 0.0069 0.0061 0.0054 0.0060

EG Agglomeration Index γ Mean 0.0290 0.0022 0.0121 0.0107 0.0158 0.0285

EG Coagglomeration Index γc Mean 0.0001 0.0003 0.0003 0.0005 0.0004 0.0003

EG Coagglomeration Index γc SD 0.0193 0.0172 0.0177 0.0150 0.0187 0.0181

Table 1:  Levels of Geographic Agglomeration and Coagglomeration 1972-1997

C. State-Level Employment in Firm Births

A. State-Level Total Employment

Notes:  Measures of industrial agglomeration and coagglomeration calculated from the Census of Manufacturers.  
Estimates include all manufacturing SIC3 industries, except those listed in the text, for 134 observations per year.

B. PMSA-Level Total Employment



1972 1977 1982 1987 1992

1977 0.953

1982 0.891 0.944

1987 0.841 0.889 0.936

1992 0.791 0.840 0.895 0.959

1997 0.740 0.789 0.832 0.890 0.941

Notes: See Table 1.  EG Coagglomeration Index measured through state total 
employments for each industry.

Table 2: Correlation of EG Coagglomeration Index



Rank Industry 1 Industry 2 Coaggl.

1 Broadwoven Mills, Cotton (221) Yarn and Thread Mills (228) 0.207
2 Knitting Mills (225) Yarn and Thread Mills (228) 0.187
3 Broadwoven Mills, Fiber (222) Textile Finishing (226) 0.178
4 Broadwoven Mills, Cotton (221) Broadwoven Mills, Fiber (222) 0.171
5 Broadwoven Mills, Fiber (222) Yarn and Thread Mills (228) 0.164
6 Handbags (317) Photographic Equipment (386) 0.155
7 Broadwoven Mills, Wool (223) Carpets and Rugs (227) 0.149
8 Carpets and Rugs (227) Yarn and Thread Mills (228) 0.142
9 Photographic Equipment (386) Jewelry, Silverware, Plated Ware (391) 0.139

10 Textile Finishing (226) Yarn and Thread Mills (228) 0.138
11 Broadwoven Mills, Cotton (221) Textile Finishing (226) 0.137
12 Broadwoven Mills, Cotton (221) Carpets and Rugs (227) 0.137
13 Broadwoven Mills, Cotton (221) Knitting Mills (225) 0.136
14 Carpets and Rugs (227) Pulp Mills (261) 0.110
15 Jewelry, Silverware, Plated Ware (391) Costume Jewelry and Notions (396) 0.107

Notes: See Table 1.  EG Coagglomeration Index measured through state total employments for each industry.

Table 3: Highest 1987 Pairwise Coagglomerations



Mean Standard Minimum Maximum
Deviation

State Total Empl. Pairwise Coaggl. 0.000 0.013 -0.065 0.207

PMSA Total Empl. Pairwise Coaggl. 0.000 0.006 -0.025 0.119

County Total Empl. Pairwise Coaggl. 0.000 0.003 -0.018 0.080

State Birth Empl. Pairwise Coaggl. 0.000 0.015 -0.082 0.259

Labor Correlation 0.470 0.226 -0.046 1.000

Input-Output Maximum 0.007 0.029 0.000 0.823

Input-Output Mean 0.002 0.010 0.000 0.240

Input Maximum 0.005 0.019 0.000 0.392

Input Mean 0.002 0.010 0.000 0.196

Output Maximum 0.005 0.026 0.000 0.823

Output Mean 0.002 0.013 0.000 0.411

Scherer R&D Tech Maximum 0.005 0.026 0.000 0.625

Scherer R&D Tech Mean 0.002 0.010 0.000 0.263

Patent Citation Tech Maximum 0.015 0.025 0.000 0.400

Patent Citation Tech Mean 0.007 0.014 0.000 0.203

Notes:  Descriptive statistics for 1987.  All pairwise combinations of manufacturing SIC3 industries are included, 
except those listed in the text, for 7381 observations.  Coagglomeration measures are calculated from the 1987 
Census of Manufacturers.  Labor Correlation indices are calculated from the BLS National Industry-Occupation 
Employment Matrix for 1987.  Input-Output relationships are calculated from the BEA Benchmark Input-Output 
Matrix for 1987.  Technology Flows are calculated from the Scherer (1984) R&D tables for the 1970s and from 
the NBER Patent Citation Database for 1975-1997.  See the data appendix for further details.

Table 4: Descriptive Statistics for 1987 Pairwise Coagglomeration Regressions

A. Pairwise Coagglomeration Measures

B. Pairwise Labor Similarities Index

C. Pairwise Input-Output Relationship Indices

D. Pairwise Technology Relationship Indices



Each row and 
column reports a State Total PMSA Total County Total State Firm Birth
separate estimation Employment Employment Employment Employment
with single regressor Coagglomeration Coagglomeration Coagglomeration Coagglomeration

(1) (2) (3) (4)

Labor Correlation 0.180 0.106 0.082 0.077 
(0.011) (0.012) (0.012) (0.012)

Input-Output 0.205 0.167 0.130 0.112 
(0.011) (0.011) (0.012) (0.012)

Technology Flows 0.180 0.148 0.107 0.089 
Scherer R&D (0.011) (0.012) (0.012) (0.012)

Technology Flows 0.081 0.100 0.085 0.068 
Patent Citations (0.012) (0.012) (0.012) (0.012)

Table 5: OLS Univariate Specifications for 1987 Pairwise Coagglomeration

Notes:  Each cell reports a separate regression of pairwise EG Coagglomeration Index on a determinant of 
industrial co-location.  Coagglomeration measures are calculated from the 1987 Census of Manufacturers using 
the employments listed in the column headers.  All pairwise combinations of manufacturing SIC3 industries are 
included, except those listed in the text, for 7381 observations.  Labor Correlation indices are calculated from 
the BLS National Industry-Occupation Employment Matrix for 1987.  Input-Output relationships are calculated 
from the BEA Benchmark Input-Output Matrix for 1987.  Technology Flows are calculated from the Scherer 
(1984) R&D tables for the 1970s and from the NBER Patent Citation Database for 1975-1997.  Maximum 
values for the pairwise combination are employed.  All variables are transformed to (mean 0, standard 
deviation 1) for interpretation.  Regressions are unweighted.  Standard errors are in parentheses.

Dependent Variable is EG Coagglomeration Index



Dependent variable
is EG Coaggl. Index Base Separate Exclude Base Separate Exclude
calculated with Estimation Input & Pairs in Estimation Input & Pairs in
state total emp. Output Same SIC2 Output Same SIC2

(1) (2) (3) (4) (5) (6)

Labor Correlation 0.146 0.142 0.110 0.135 0.134 0.108 
(0.011) (0.011) (0.012) (0.011) (0.011) (0.012)

Input-Output 0.149 0.108 0.185 0.117 
(0.012) (0.012) (0.012) (0.012)

Input 0.109 0.116 
(0.014) (0.014)

Output 0.095 0.098 
(0.013) (0.013)

Technology Flows 0.112 0.096 0.050 0.125 0.121 0.032 
Scherer R&D (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

Observations 7381 7381 7000 7381 7381 7000

Table 6: OLS Multivariate Specifications for 1987 Pairwise Coagglomeration

Notes:  See Table 5.  Regression of pairwise EG Coagglomeration Index on determinants of industrial co-location.  
Coagglomeration measures are calculated from the 1987 Census of Manufacturers using state total employments for each industry.  
Columns 3 and 6 exclude SIC3 pairwise combinations within the same SIC2.  Appendix Table 2 repeats Column 1 with alternative 
coagglomeration metrics.

Pairwise Maximum Regressions Pairwise Mean Regressions



State State PMSA PMSA County County State State
Total Empl. Total Empl. Total Empl. Total Empl. Total Empl. Total Empl. Birth Empl. Birth Empl.

Coaggl. Coaggl. Coaggl. Coaggl. Coaggl. Coaggl. Coaggl. Coaggl.
OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

Labor Correlation 0.108 0.140 0.033 0.151 0.029 0.047 0.042 0.187 
(0.012) (0.056) (0.012) (0.057) (0.012) (0.056) (0.012) (0.056)

Input-Output 0.121 0.149 0.096 0.078 0.075 0.103 0.051 0.152 
(0.012) (0.045) (0.012) (0.045) (0.012) (0.045) (0.012) (0.043)

Labor Correlation 0.110 0.120 0.035 0.136 0.030 0.028 0.042 0.254 
(0.012) (0.059) (0.012) (0.060) (0.012) (0.060) (0.012) (0.066)

Input-Output 0.108 0.095 0.085 0.039 0.068 0.051 0.047 0.341 
(0.012) (0.121) (0.012) (0.123) (0.012) (0.123) (0.012) (0.136)

Technology Flows 0.050 0.104 0.041 0.076 0.026 0.099 0.015 -0.359
Scherer R&D (0.012) (0.181) (0.012) (0.183) (0.012) (0.183) (0.012) (0.204)

Table 7: OLS and IV Multivariate Specifications for 1987 Pairwise Coagglomeration

Notes:  See Tables 5 and 6.  OLS and IV Regression of pairwise EG Coagglomeration Index on determinants of industrial co-location.  Appendix Table 3 documents the 
first-stage coefficients.

Dependent Variable is EG Coagglomeration Index

A. OLS and IV Multivariate Specifications with Labor and Input-Output Only

B. OLS and IV Multivariate Specifications with Scherer Technology Metric



20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

20 0.002

22 -0.003 0.102

23 0.000 0.021 0.012

24 0.003 0.012 0.003 0.013

25 -0.001 0.016 0.002 0.002 0.000

26 0.001 0.012 0.004 0.006 -0.001 0.005

27 0.001 -0.001 0.001 -0.003 -0.004 0.000 0.004

28 0.001 0.004 0.001 0.000 -0.002 0.002 0.001 0.007

29 0.004 -0.018 -0.003 0.000 -0.006 -0.002 0.001 0.008 0.013

30 -0.001 0.003 -0.003 -0.001 0.001 0.000 -0.001 0.001 -0.001 0.002

31 0.000 -0.005 0.006 -0.001 -0.003 0.005 0.006 0.001 -0.003 -0.003 0.019

32 0.001 0.001 0.002 0.000 -0.002 0.000 0.000 0.003 0.006 0.001 -0.001 0.003

33 -0.001 -0.012 -0.006 -0.002 -0.004 0.001 -0.001 0.001 0.002 0.004 -0.003 0.004 0.010

34 -0.001 -0.014 -0.007 -0.004 -0.002 -0.002 0.000 -0.001 0.001 0.002 -0.003 0.000 0.005 0.004

35 0.000 -0.011 -0.006 -0.003 -0.002 -0.001 0.001 -0.001 0.000 0.001 -0.001 -0.001 0.003 0.004 0.001

36 0.001 -0.007 -0.001 -0.002 0.000 -0.003 0.001 -0.002 0.000 0.000 0.002 -0.001 -0.001 0.000 0.000 0.000

37 -0.001 -0.017 -0.008 -0.001 0.001 -0.004 -0.002 -0.004 0.000 -0.002 -0.008 -0.002 0.004 0.004 0.001 -0.001 -0.004

38 -0.002 -0.010 0.005 -0.005 -0.003 -0.002 0.006 -0.003 -0.005 -0.005 0.009 -0.003 -0.005 -0.002 0.000 0.002 -0.004 0.008

39 -0.001 -0.007 0.005 -0.004 -0.004 0.000 0.005 -0.001 -0.003 -0.003 0.010 -0.002 -0.002 -0.001 0.000 0.003 -0.006 0.012 0.014

App. Table 1: Inter-Industry 1987 Pairwise Coagglomeration Averages

Notes:  Table entries are the weighted-average pairwise SIC3 coagglomerations within the pairwise SIC2 cell.  EG Coagglomeration Index measured through state total employments 
for each industry.



State Total PMSA Total County Total State Firm Birth
Employment Employment Employment Employment

Coagglomeration Coagglomeration Coagglomeration Coagglomeration

(1) (2) (3) (4)

Labor Correlation 0.146 0.078 0.060 0.060 
(0.011) (0.012) (0.012) (0.012)

Input-Output 0.149 0.125 0.101 0.086 
(0.012) (0.012) (0.012) (0.013)

Technology Flows 0.112 0.098 0.067 0.054 
Scherer R&D (0.012) (0.012) (0.012) (0.012)

App. Table 2: OLS Multivariate Specifications for 1987 Pairwise Coagglomeration

Notes:  See Table 6.  Column 1 repeats the first column of Table 6 with coagglomeration measured through 
state total employments for each industry.  Columns 2-4 substitute alternative metrics of coagglomeration.

Dependent Variable is EG Coagglomeration Index



Dependent variable
is the explanatory 
regressor listed in Labor Input- Technology Labor Input- Labor Input- Technology
the column header Correlation Output Scherer Correlation Output Correlation Output Scherer

(1) (2) (3) (4) (5) (6) (7) (8)

UK Labor IV 0.278 0.262 0.095 0.247 0.041 0.048
(0.011) (0.012) (0.011) (0.012) (0.012) (0.012)

UK Input-Output 0.345 0.070 0.323 0.064 0.300 0.159 
IV (0.011) (0.012) (0.011) (0.012) (0.011) (0.012)

UK Technology 0.237 0.054 0.202 0.195 
Flows IV (0.012) (0.012) (0.012) (0.012)

with Technology
Multivariate First-Stages

App. Table 3: Univariate and Multivariate First-Stage Specifications for UK IV of Determinants of Co-Locations

Notes:  First-stage regressions of U.S. pairwise determinants of industrial co-location on similarly constructed U.K. instruments.  All pairwise 
combinations of manufacturing SIC3 industries are included, except those listed in the text, for 7000 observations.  The decline in observations 
from Table 5 is due to the exclusion of pairwise combinations within the same SIC2.  Variable constructions are described in the data appendix.  
Maximum values for the pairwise combination are employed.  All variables are transformed to (mean 0, standard deviation 1) for interpretation.  
Regressions are unweighted.  Standard errors are in parentheses.

Univariate First-Stage Specifications without Technology
Multivariate First-Stages
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1 Overview

This note provides more detail about the coagglomeration dataset developed for Ellison, Glaeser,
and Kerr (2007). It �rst outlines the Census Bureau data employed for the construction of the
Ellison and Glaeser (1997) coagglomeration metrics. It then outlines the development of the
U.S.-based metrics of Marshall�s agglomeration theories. The note closes with the design of the
U.K.-based instrumental variables.

2 US Coagglomeration Metrics

Our estimates of industrial coagglomeration patterns are developed through con�dential data
housed by the U.S. Census Bureau. The Census of Manufacturers is conducted every �ve years
(those ending with 2 or 7) and surveys the universe of manufacturing plants operating in the U.S.
With appropriate clearance, researchers can analyze the microdata of these Censuses, which is
essential for estimating coagglomeration levels of detailed industries as public reports suppress
values that risk disclosing the operating details of individual �rms. Moreover, as the microdata
for plants can be linked longitudinally across Censuses, we can compare the coagglomeration
of existing establishment with that of new entrants. We focus on the six Census of Manufac-
turers conducted from 1972 to 1997, providing approximately 300k establishment observations
employing 17 million workers in each census year.1

Following Proposition 1, the pairwise coagglomeration between industry pair 1 and 2 can be
analyzed with the simple formula

c =

PM
m=1(sm1 � xm)(sm2 � xm)

1�
PM

m=1 x
2
m

;

where M indexes geographic regions. s1i; s2i; : : : ; sMi are the shares of industry i�s employment
contained in each of these areas. x1; x2; : : : ; xM are some other measure of the size of these areas,
such as each area�s share of population or aggregate employment. We model xm in this paper
through the mean employment share in the region across manufacturing industries.2

We operationalize this coagglomeration measure among manufacturing industries using the
three-digit level of the 1987 Standard Industrial Classi�cation (SIC3). Our primary measure of
the economic activity in an industry j in a given geographic area m is the total employment in
all manufacturing establishments excluding auxiliary units. The smj measure is then the share
of the industry j�s employment in region m. Throughout the paper, we simultaneously report
coagglomeration metrics calculated at the state-level (including the District of Columbia), the

1The 2002 Census of Manufacturers recently became available. It employs the NAICS industry codes, however,
that make it di¢ cult to compare to earlier years. Ellison et al. (2006) discusses the calculation of coagglomeration
measures under the NAICS framework. Dunne et al. (1989), McGuckin and Peck (1992), Davis et al. (1996),
Kerr and Nanda (2006), and Autor et al. (2007) provide detailed accounts of the Census Bureau data.

2While the Ellison and Glaeser (1997) formula allows for the xm to vary across industries, the equivalency
formula in Proposition 1 requires that they be the same.
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PMSA-level, and the county-level. These variants only adjust the M demarcations on which s
and x are calculated.
The regression sample includes the pairwise combinations of 122 SIC3 industries. Tobacco

(210s), Fur (237), and Search and Navigation Equipment (381) are excluded throughout the
paper due to major industry reclassi�cations at the plant-level in the Census of Manufacturers
that are di¢ cult to interpret. In the empirical estimations in Section 5, the remainder of Apparel
(230s), a portion of Printing and Publishing (277-279), and Secondary Non-Ferrous Metals (334)
are also excluded due to either an inability to construct appropriate Marshallian explanatory
matrices or outlier concerns in the explanatory data. Finally, we exclude same-industry pairs
for a total of 7381 unique pairwise industry combinations per Census of Manufacturers.

3 US Coagglomeration Determinants

We use industry attributes to design coagglomeration-oriented metrics that mirror each of Mar-
shall�s three theories of industry agglomeration: (1) labor market pooling, (2) proximity to input
suppliers or industrial customers to save on transportation costs, and (3) intellectual or technol-
ogy spillovers. Data Appendix Table 1 documents the summary statistics for these metrics, and
Data Appendix Table 2 lists the extreme pairwise values. A condensed version of this section
appears in the main text.

3.1 Labor market pooling

One of Marshall�s theories of industrial location is that �rms locate near one another to shield
workers from the vicissitudes of �rm-speci�c shocks. Workers are willing to accept lower wages
in locations where other �rms stand by ready to hire them (see Diamond and Simon (1990)
for evidence and Krugman (1991) for a formalization). Rotemberg and Saloner (2000) present
an alternative theory in which workers gain not because of insurance from shocks, but because
multiple �rms protect workers against ex post appropriation of investments in human capital.
Both theories predict that plants that use the same type of workers will locate near one another.
To test the labor pooling theory, we construct a metric of the similarity in the occupational

labor requirements for pairwise industries. We build from the 1987 National Industry-Occupation
Employment Matrix (NIOEM) published by the Bureau of Labor Statistics (BLS). The NIOEM
provides industry-level employments (at the national level) in 277 occupations. We convert the
occupational employment counts into occupational percentages for each industry and map the
BLS industries to the SIC3 framework. 52 of the 185 broadly-de�ned BLS industries are within
manufacturing. Each SIC3 industry is assumed to possess the same occupational composition
of employment as that of the NIOEM industry to which it belongs.3

3The BLS has recently released a 1983-1998 longitudinal version of the NIOEM. Users should note that the
occupations employed in the standardized version di¤er slightly from those in the 1987 NIOEM we employ.
Metrics calculated from the new panel are very close to those used in this paper.
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Our metric of labor similarity, LaborCorrelationij, is a vector correlation of occupational
percentages between two industries. LaborCorrelationij averages 0.47 across the pairs of manu-
facturing industries, with a range of -0.05 to 1.00. The least correlated industry pair is Logging
(241) and Aircrafts and Parts (372) at -0.046. The perfect correlation maximum value re�ects
that some NIOEM industries map to two or more SIC3 industries; the empirical speci�cations
in the main paper account for this multiplicity. The most correlated industry pair, not by con-
struction, is Motor Vehicles and Equipment (371) and Motorcycles, Bicycles, and Parts (375)
at 0.984. Finally, note that the labor pooling metrics are symmetrical for a pairwise industry
combination i,j: LaborCorrelationij = LaborCorrelationji. This is not generally the case for
the next two factors discussed, where directional �ows are evident.

3.2 The presence of suppliers and customers

Marshall (1920) also argues that transportation costs should induce plants to locate close to
their inputs, close to their customers, or most likely at some point optimally trading o¤ distance
between inputs and customers. To test this theory, we construct metrics of the importance of
customer or supplier relationships for pairwise industries. We build our metrics from the 1987
Benchmark Input-Output Accounts published by the Bureau of Economic Analysis. The �Use
of Commodities by Industries�table provides commodity-level make and use for �ows for very
detailed industries at the national level, which we aggregate to the SIC3 framework. While some
commodities can partly be produced by other industries than the one associated with these
commodities, we ignore this distinction and therefore interpret the numbers from the table as
providing an estimate of how much of an industry�s production is used as an input to other
industries.
We de�ne Inputi j as the share of industry i�s inputs that come from industry j, and

Outputi!j as the share of industry i�s outputs that go to industry j. These measures run
from 0 (no input or output purchasing relationship exists) to 1 (full dependency on the paired
industry). These shares are calculated relative to all input-output �ows, including those to
non-manufacturing industries or to �nal consumers.
The strongest relative customer or input dependency is Leather Tanning and Finishing�s

(311) purchases from Meat Products (201) at 0.39. The highest absolute customer dependency
(with a relative share of 23%) is Misc. Plastics Products (308) purchases from Plastic Materials
and Synthetics (282). The strongest relative output or supplier dependency is Public Building
and Related Furniture�s sales to Motor Vehicles and Equipment (371) at 82%. The highest
absolute supplier dependency (with a relative share of 32%) is Plastic Materials and Synthetics
(282) sales to Misc. Plastics Products (308). Approximately 70% of pairwise combinations have
an input-output dependency less than 0.01%.
This construction results in four potential metrics for a pairwise industry i,j combination:

Inputi j, Inputj i, Outputi!j, and Outputj!i. Unlike the labor pooling metrics, customer and
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supplier �ows are not symmetrical (Inputi j 6= Inputj!i). Moreover, the �ows between the
plastics industries highlights how di¤erences in industry size and the importance of �ows to or
from non-manufacturing industries and �nal consumers result in asymmetries between pairwise
customer and supplier dependencies (Inputi j 6= Outputj!i). To operationalize these metrics
for the pairwise coagglomeration regressions, we take either the maximum or the mean of the
Input and Output relationships for the pairwise i,j combination. We also examine jointly the
input-output role by calculating means and maximums across all four metrics.

3.3 Intellectual or technology spillovers

Firms may also locate where they are likely to learn from other �rms. This learning can take the
form of workers learning skills from one another (as Marshall argued) or industrial innovators
copying each other (as Saxenian (1994) reports for Silicon Valley). Firms will group near one
another either because of the gains from continued presence or because the idea leading to the
opening of a new establishment came from an existing concentration of employment in nearby
plants. To test this third theory, we develop two metrics of intellectual spillovers that focus
speci�cally on the sourcing of technological innovations. The primary metric is derived from
technology �ow matrices developed by Scherer (1984); the second metric is derived from patent
citations.
Of Marshall�s three theories, intellectual spillovers are the most di¢ cult to quantify and

to assess empirically. We �rst note that our metrics focus only technology spillovers. Other
intellectual or information spillovers may exist between industries that are not captured by
our design, although technology sourcing is a very important form of knowledge sharing for
the manufacturing sector. Second, the discussion below highlights that technology �ows are
not mutually exclusive to Marshall�s �rst two theories. Technologies embodied in products and
machinery can be transferred directly through input-output exchanges. Likewise, industries that
share similar labor pools may also be industries between which there is a greater possibility for
intellectual spillovers. Our empirical exercises attempt to isolate technology spillovers by joint
testing with these other two factors, but it is important to note that intellectual spillovers do
occur within these channels too.

3.3.1 Scherer Technology Flows

Scherer (1984) develops a technology �ow matrix that estimates the extent to which R&D
activity in one industry �ows out to bene�t another industry. This technology transfer occurs
either through a supplier-customer relationship between these two industries or through the
likelihood that patented inventions obtained in one industry will �nd applications in the other
industry. We develop two metrics, TechIni j and TechOuti!j, for these technology �ows that
mirror Input and Output described above. These dependencies are again directional in nature
and are calculated relative to total technology �ows that include non-manufacturing industries.
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The strongest relative technology �ows are associated with Plastic Materials and Synthetics
(282) and its relationships to Misc. Plastics Products (308), Tires and Inner Tubes (301) and
Industrial Organic Chemicals (286).
The raw technology �ows are taken from Table 20.1 of Scherer (1984). Each entry in that

table is a dollar amount of 1974 R&D spending in a given industry that is estimated to �ow
out to bene�t another industry. We converted the 38 manufacturing industries reported by
Scherer (1984) to the SIC3 framework by apportioning entries through total value of shipments
(obtained from the 1987 Census of Manufactures). For instance, if T �mn is the entry in Scherer�s
table corresponding to the dollar �ow of bene�ts from industry m to industry n, and j (resp., i)
is a three-digit industry that is part of industry group m (resp., n) and accounts for a fraction
wj (resp, wi) of all shipments in that industry group, then Tji = wiwj T �mn.

3.3.2 Patent Citation Flows

The NBER Patent Data File was originally compiled by Hall et al. (2001). This dataset
o¤ers detailed records for all patents granted by the United States Patent and Trademark O¢ ce
(USPTO) from January 1975 to December 1999. Each patent record provides information about
the invention (e.g., technology classi�cation, citations of prior art) and the inventors submitting
the application (e.g., name, city). Patent citation patterns can be informative about technology
di¤usion and knowledge exchanges. Griliches (1990) and Ja¤e et al. (2000) further discuss
employing patent citations in this context.
We construct our second knowledge spillovers metric through the patent citations. We restrict

the citations data to be citations where both the citing and cited patents are a) applied for after
1975 and b) �led within the U.S. This sample includes 4,467,625 citations. These citations are
�rst collapsed into a citation matrix using the USPTO technology categories, over 400 in number.
Combining the work of Johnson (1999), Silverman (1999) and Kerr (forthcoming), concordances
are developed between the USPTO classi�cation scheme and SIC3 industries (a probabilistic
mapping).
The resulting metrics estimate the extent to which technologies associated with industry i

cite technologies associated with industry j, and vice versa. These PatInij and PatOutij are
normalized by total citations for the industries. In practice, there is little directional di¤er-
ence between PatInij and PatOutij due to the extensive number of citations within a single
technology �eld, in which case the probabilistic citing and cited industry distributions are the
same. These patent-based metrics have the advantage of covering the 1975-2000 period, but
inventor-to-inventor communication patterns represent a subset of the technology �ows Scherer
(1984) attempts to encompass.
We primarily use the patent citations data to construct the U.K. instrument for technology

�ows in the U.S. As further noted below, using the same technology-to-industry concordance
structurally relates the U.S. and U.K. citation matrices. Thus, it is better to use the U.K.
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citation matrices with the Scherer (1984) technology �ows.

4 UK Instrumental Variables

The above U.S. metrics are useful for examining correlations in the data regarding the determi-
nants of coagglomeration. A clear interpretation of the results, however, is limited by concerns
of reverse causality. Take our observed importance of customer relationships as an example. Our
exposition suggests �rms are choosing their geographic locations to be near their customers in
order to minimize transportation costs. An alternative explanation of the �ndings, however, is
that these �rm locations are determined by other factors (e.g., historical accidents). After these
locations are determined, �rms choose to sell to nearby industries. These sales are subsequently
re�ected in the BEA Benchmark Input-Output Accounts, leading to our observed correlations.
To recover a causal assessment, we develop instruments for our explanatory variables from

equivalent data in the U.K. Their sources and construction mirror those described for the U.S.
and are described below. The identifying assumption is that the observed input-output, labor
pooling, and technology sourcing relationships among industries in the U.K. are correlated with
the natural inter-industry dependencies but are orthogonal to any endogenous industry inter-
dependencies present in the U.S. data that arise from reverse causality. The instruments may
have applications in other contexts too.

4.1 Labor market pooling

The U.K. does not publish a detailed equivalent of the BLS�National Industry-Occupation Em-
ployment Matrix. To construct a similar matrix for the U.K., we pooled six years of the U.K.
Labour Force Survey (LFS), akin to the U.S. Current Population Survey. We then developed ma-
trices of the occupation-by-industry distribution of currently employed workers by summing over
the survey. The included surveys are March-May 2001, June-August 2002, September-November
2003, December 2004-February 2005, and April-June 2006. This pooled dataset contains 224,528
employed workers out of 520,952 respondents; 42,948 work in manufacturing. We maintained
the occupation codes Soc2km (353 classi�cations) and Sc2kmmn (84 classi�cations) at their
detailed level for estimating labor similarities. We mapped the industry code Indm92m (461
classi�cations, 265 in manufacturing) into the SIC3 system.4

4.2 The presence of suppliers and customers

The input-output matrices are taken from Maskus et al. (1994) and Maskus and Webster
(1995). These researchers began with the 1989 Input-Output Balance for the United Kingdom,

4We employ a later period than our typical 1987 date to increase the available LFS sample size and ques-
tionnaire detail. The period starts after occupation classi�cations changed in 2001. The staggered surveys avoid
double counting as one-�fth of the LFS�respondents rotate out each quarter. From 2005, the data collection
periods shift from (mar-may, jun-aug, sep-nov, dec-feb) to (jan-mar, apr-jun, jul-sep, oct-dec).
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published by the Central Statistical O¢ ce, London, in 1992. The original table contained 102
sectors; Maskus et al. (1994) aggregated the table into 80 sectors that formed the least common
denominator with the U.S. tables they were also employing. These tables again include �ows
out of the manufacturing sector that are used for normalizations. We mapped the 80 Maskus et
al. sectors that corresponded to the SIC3 system. The empirical analysis in the text accounts
for this multiplicity.

4.3 Intellectual or technology spillovers

The U.K. technology �ows matrices are calculated through the NBER patent citations data.
The construction mirrors the U.S. citation development documented above, except that we limit
the raw sample to those citations where both the citing and cited patents are �led from the U.K.
28,134 citations from 1975-1999 are used for these metrics. It is important to note that U.K.
citations are converted from the USPC classi�cation system to the SIC3 framework using the
same technology concordances as used for converting the U.S. data. Using the U.K. citations
as an instrument for spillovers measured through the U.S. citations will deliver overstated �rst-
stages by construction. The U.K. citations are better suited as an instruments for the Scherer
(1984) technology �ow matrices.5

5The core element of the USPC-to-industry concordances comes from Canadian data that jointly classi�ed
patents into technologies and industries. Thus combining the U.K. citations with the industry concordances
is still excludable for an instrument of U.S. technology �ows. By themselves, the U.K. citations can serve as
instruments for U.S. citations when using just the USPC codes; it is the industry conversion that introduces the
common structural forms.
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Mean Standard Minimum Maximum
Deviation

State Total Empl. Pairwise Coaggl. 0.000 0.013 -0.065 0.207

PMSA Total Empl. Pairwise Coaggl. 0.000 0.006 -0.025 0.119

County Total Empl. Pairwise Coaggl. 0.000 0.003 -0.018 0.080

State Birth Empl. Pairwise Coaggl. 0.000 0.015 -0.082 0.259

Labor Correlation 0.470 0.226 -0.046 1.000

Input-Output Maximum 0.007 0.029 0.000 0.823

Input-Output Mean 0.002 0.010 0.000 0.240

Input Maximum 0.005 0.019 0.000 0.392

Input Mean 0.002 0.010 0.000 0.196

Output Maximum 0.005 0.026 0.000 0.823

Output Mean 0.002 0.013 0.000 0.411

Scherer R&D Tech Maximum 0.005 0.026 0.000 0.625

Scherer R&D Tech Mean 0.002 0.010 0.000 0.263

Patent Citation Tech Maximum 0.015 0.025 0.000 0.400

Patent Citation Tech Mean 0.007 0.014 0.000 0.203

Notes:  Descriptive statistics for 1987.  All pairwise combinations of manufacturing SIC3 industries are included, 
except those listed in the text, for 7381 observations.  Coagglomeration measures are calculated from the 1987 
Census of Manufacturers.  Labor Correlation indices are calculated from the BLS National Industry-Occupation 
Employment Matrix for 1987.  Input-Output relationships are calculated from the BEA Benchmark Input-Output 
Matrix for 1987.  Technology Flows are calculated from the Scherer (1984) R&D tables for the 1970s and from 
the NBER Patent Citation Database for 1975-1997.

Data App. Table 1: 1987 Descriptive Statistics

A. Pairwise Coagglomeration Measures

B. Pairwise Labor Similarities Index

C. Pairwise Input-Output Relationship Indices

D. Pairwise Technology Relationship Indices



Industry 1 Industry 2 Labor Cor.

Motor Vehicles and Equipment (371) Railroad Equipment (374) 0.984
Motor Vehicles and Equipment (371) Motorcycles, Bicycles, and Parts (375) 0.984
Motor Vehicles and Equipment (371) Miscellaneous Transportation Equipment (379) 0.984
Musical Instruments (393) Toys and Sporting Goods (394) 0.979
Toys and Sporting Goods (394) Pens, Pencils, Office & Art Suppliers (395) 0.979

Industry 1 Industry 2 Labor Cor.

Logging (241) Aircrafts and Parts (372) -0.046
Logging (241) Engines and Turbines (351) -0.029
Logging (241) Motor Vehicles and Equipment (371) -0.029
Logging (241) Guided Missiles, Space Vehicles, Parts (376) -0.029
Logging (241) Metalworking Machinery (354) -0.021

Data App. Table 2A: Highest Labor Correlation Metrics

Data App. Table 2B: Lowest Labor Correlation Metrics



Using Industry Source Industry Input Vol. Input Share

Leather Tanning and Finishing (311) Meat Products (201) 872 0.392
Sawmills and Planing Mills (242) Logging (241) 6811 0.360
Leather Gloves and Mittens (315) Leather Tanning and Finishing (311) 58 0.345
Yarn and Thread Mills (228) Plastics Materials and Synthetics (282) 2154 0.309
Wood Containers (244) Sawmills and Planing Mills (242) 548 0.271

Using Industry Source Industry Input Vol. Input Share

Misc. Plastics Products (308) Plastics Materials and Synthetics (282) 13,999 0.229
Motor Vehicles and Equipment (371) Metal Forgings and Stampings (346) 11,378 0.055
Plastics Materials and Synthetics (282) Industrial Organic Chemicals (286) 9903 0.243
Fabricated Structural Metal Products (344) Blast Furnace and Basic Steel Products (331) 7607 0.196
Metal Forgings and Stampings (346) Blast Furnace and Basic Steel Products (331) 7011 0.249

Source Industry Using Industry Output Vol. Output Share

Public Building and Related Furniture (253) Motor Vehicles and Equipment (371) 1681 0.823
Cement, Hydraulic (324) Concrete, Gypsum, and Plaster Products (327) 3380 0.819
Primary Nonferrous Metals (333) Nonferrous Rolling and Drawing (335) 5750 0.504
Metal Cans and Shipping Containers (341) Beverages (208) 5768 0.491
Logging (241) Sawmills and Planing Mills (242) 6811 0.440

Source Industry Using Industry Output Vol. Output Share

Plastics Materials and Synthetics (282) Misc. Plastics Products (308) 13,999 0.322
Metal Forgings and Stampings (346) Motor Vehicles and Equipment (371) 11,378 0.401
Industrial Organic Chemicals (286) Plastics Materials and Synthetics (282) 9903 0.179
Blast Furnace and Basic Steel Products (331) Fabricated Structural Metal Products (344) 7607 0.153
Blast Furnace and Basic Steel Products (331) Metal Forgings and Stampings (346) 7011 0.141

Data App. Table 2C: Highest Relative Customer Dependencies Metrics

Data App. Table 2D: Highest Absolute Customer Dependencies Metrics

Data App. Table 2E: Highest Relative Supplier Dependencies Metrics

Data App. Table 2F: Highest Absolute Supplier Dependencies Metrics



Using Industry Source Industry Input Vol. Input Share

Misc. Plastics Products (308) Plastics Materials and Synthetics (282) 104 0.217
Rubber and Plastics Footwear (302) Plastics Materials and Synthetics (282) 1 0.200
Tires and Inner Tubes (301) Plastics Materials and Synthetics (282) 48 0.165
Fabricated Rubber Products (306) Plastics Materials and Synthetics (282) 11 0.131
Hose, Belting, Gaskets, and Packing (305) Plastics Materials and Synthetics (282) 5 0.116

Using Industry Source Industry Input Vol. Input Share

Misc. Plastics Products (308) Plastics Materials and Synthetics (282) 104 0.217
Tires and Inner Tubes (301) Plastics Materials and Synthetics (282) 48 0.165
Plastics Materials and Synthetics (282) Industrial Organic Chemicals (286) 24 0.040
Aircrafts and Parts (372) Computers and Office Equipment (357) 21 0.039
Petroleum Refining (291) Computers and Office Equipment (357) 19 0.043

Source Industry Using Industry Output Vol. Output Share

Plastics Materials and Synthetics (282) Misc. Plastics Products (308) 104 0.172
Textile Finishing (226) Misc. Plastics Products (308) 2 0.146
Ordnance and Accessories (348) Guided Missiles, Space Vehicles, Parts (376) 3 0.133( )
Broadwoven Mills, Fiber (222) Misc. Plastics Products (308) 2 0.086
Industrial Organic Chemicals (286) Plastics Materials and Synthetics (282) 24 0.081

Source Industry Using Industry Output Vol. Output Share

Plastics Materials and Synthetics (282) Misc. Plastics Products (308) 104 0.172
Plastics Materials and Synthetics (282) Tires and Inner Tubes (301) 48 0.080
Industrial Organic Chemicals (286) Plastics Materials and Synthetics (282) 24 0.081
Computers and Office Equipment (357) Aircrafts and Parts (372) 21 0.018
Computers and Office Equipment (357) Petroleum Refining (291) 19 0.017

Data App. Table 2G: Highest Relative Technology Input Dependencies Metrics

Data App. Table 2H: Highest Absolute Technology Input Dependencies Metrics

Data App. Table 2I: Highest Relative Technology Supplier Dependencies Metrics

Data App. Table 2J: Highest Absolute Technology Supplier Dependencies Metrics




